NDC 0009-0760 Cleocin Pediatric

Clindamycin Palmitate Hydrochloride

NDC Product Code 0009-0760

NDC Code: 0009-0760

Proprietary Name: Cleocin Pediatric What is the Proprietary Name?
The proprietary name also known as the trade name is the name of the product chosen by the medication labeler for marketing purposes.

Non-Proprietary Name: Clindamycin Palmitate Hydrochloride What is the Non-Proprietary Name?
The non-proprietary name is sometimes called the generic name. The generic name usually includes the active ingredient(s) of the product.

NDC Code Structure

  • 0009 - Pharmacia And Upjohn Company Llc
    • 0009-0760 - Cleocin Pediatric

NDC 0009-0760-04

Package Description: 1 BOTTLE in 1 CARTON > 100 mL in 1 BOTTLE

NDC Product Information

Cleocin Pediatric with NDC 0009-0760 is a a human prescription drug product labeled by Pharmacia And Upjohn Company Llc. The generic name of Cleocin Pediatric is clindamycin palmitate hydrochloride. The product's dosage form is granule, for solution and is administered via oral form.

Labeler Name: Pharmacia And Upjohn Company Llc

Dosage Form: Granule, For Solution - A small medicinal particle or grain made available in its more stable dry form, to be reconstituted with solvent just before dispensing; the granules are so prepared to contain not only the medicinal agent, but the colorants, flavorants, and any other desired pharmaceutic ingredient.

Product Type: Human Prescription Drug What kind of product is this?
Indicates the type of product, such as Human Prescription Drug or Human Over the Counter Drug. This data element matches the “Document Type” field of the Structured Product Listing.

Cleocin Pediatric Active Ingredient(s)

What is the Active Ingredient(s) List?
This is the active ingredient list. Each ingredient name is the preferred term of the UNII code submitted.

  • CLINDAMYCIN PALMITATE HYDROCHLORIDE 75 mg/5mL

Inactive Ingredient(s)

About the Inactive Ingredient(s)
The inactive ingredients are all the component of a medicinal product OTHER than the active ingredient(s). The acronym "UNII" stands for “Unique Ingredient Identifier” and is used to identify each inactive ingredient present in a product.

  • ETHYLPARABEN (UNII: 14255EXE39)
  • DIMETHICONE (UNII: 92RU3N3Y1O)
  • POLOXAMER 188 (UNII: LQA7B6G8JG)
  • SUCROSE (UNII: C151H8M554)
  • ICODEXTRIN (UNII: 2NX48Z0A9G)

Administration Route(s)

What are the Administration Route(s)?
The translation of the route code submitted by the firm, indicating route of administration.

  • Oral - Administration to or by way of the mouth.

Pharmacological Class(es)

What is a Pharmacological Class?
These are the reported pharmacological class categories corresponding to the SubstanceNames listed above.

  • Decreased Sebaceous Gland Activity - [PE] (Physiologic Effect)
  • Lincosamide Antibacterial - [EPC] (Established Pharmacologic Class)
  • Lincosamides - [CS]

Product Labeler Information

What is the Labeler Name?
Name of Company corresponding to the labeler code segment of the Product NDC.

Labeler Name: Pharmacia And Upjohn Company Llc
Labeler Code: 0009
FDA Application Number: ANDA062644 What is the FDA Application Number?
This corresponds to the NDA, ANDA, or BLA number reported by the labeler for products which have the corresponding Marketing Category designated. If the designated Marketing Category is OTC Monograph Final or OTC Monograph Not Final, then the Application number will be the CFR citation corresponding to the appropriate Monograph (e.g. “part 341”). For unapproved drugs, this field will be null.

Marketing Category: ANDA - A product marketed under an approved Abbreviated New Drug Application. What is the Marketing Category?
Product types are broken down into several potential Marketing Categories, such as NDA/ANDA/BLA, OTC Monograph, or Unapproved Drug. One and only one Marketing Category may be chosen for a product, not all marketing categories are available to all product types. Currently, only final marketed product categories are included. The complete list of codes and translations can be found at www.fda.gov/edrls under Structured Product Labeling Resources.

Start Marketing Date: 04-17-1986 What is the Start Marketing Date?
This is the date that the labeler indicates was the start of its marketing of the drug product.

Listing Expiration Date: 12-31-2019 What is the Listing Expiration Date?
This is the date when the listing record will expire if not updated or certified by the product labeler.

Exclude Flag: N What is the NDC Exclude Flag?
This field indicates whether the product has been removed/excluded from the NDC Directory for failure to respond to FDA’s requests for correction to deficient or non-compliant submissions. Values = ‘Y’ or ‘N’.

* Please review the disclaimer below.

Information for Patients

Clindamycin

Clindamycin is pronounced as (klin'' da mye' sin)

Why is clindamycin medication prescribed?
Clindamycin is used to treat certain types of bacterial infections, including infections of the lungs, skin, blood, female reproductive organs, and internal organs. Clind...
[Read More]

* Please review the disclaimer below.

Cleocin Pediatric Product Labeling Information

The product labeling information includes all published material associated to a drug. Product labeling documents include information like generic names, active ingredients, ingredient strength dosage, routes of administration, appearance, usage, warnings, inactive ingredients, etc.

Product Labeling Index

Warning

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including clindamycin and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C.difficile.Because clindamycin therapy has been associated with severe colitis which may end fatally, it should be reserved for serious infections where less toxic antimicrobial agents are inappropriate, as described in the INDICATIONS AND USAGE section. It should not be used in patients with nonbacterial infections such as most upper respiratory tract infections. C.difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C.difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C.difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C.difficile, and surgical evaluation should be instituted as clinically indicated.

Description

Clindamycin palmitate hydrochloride is a water soluble hydrochloride salt of the ester of clindamycin and palmitic acid. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin.The structural formula is represented below:The chemical name for clindamycin palmitate hydrochloride is Methyl 7-chloro-6, 7, 8-trideoxy-6-(1-methyl-trans-4-propyl-L-2-pyrrolidinecarboxamido)-1-thio-L-threo-α-D-galacto-octopyranoside 2-palmitate monohydrochloride.CLEOCIN PEDIATRIC Flavored Granules contain clindamycin palmitate hydrochloride for reconstitution. Each 5 mL contains the equivalent of 75 mg clindamycin. Inactive ingredients: artificial cherry flavor, dextrin, ethylparaben, pluronic F68, simethicone, sucrose.

Absorption

Blood level studies comparing clindamycin palmitate HCl with clindamycin hydrochloride show that both drugs reach their peak active serum levels at the same time, indicating a rapid hydrolysis of the palmitate to the clindamycin.Serum level studies with clindamycin palmitate HCl in normal pediatric patients weighing 50-100 lbs given 2, 3 or 4 mg/kg every 6 hours (8, 12 or 16 mg/kg/day) demonstrated mean peak clindamycin serum levels of 1.24, 2.25 and 2.44 mcg/mL respectively, one hour after the first dose. By the fifth dose, the 6-hour serum concentration had reached equilibrium. Peak serum concentrations after this time would be about 2.46, 2.98 and 3.79 mcg/mL with doses of 8, 12 and 16 mg/kg/day, respectively. Serum levels have been uniform and predictable from person to person and dose to dose.

Distribution

Multiple-dose studies in neonates and infants up to 6 months of age show that the drug does not accumulate in the serum and is excreted rapidly. Serum levels exceed the MICs for most indicated organisms for at least six hours following administration of the usually recommended doses of CLEOCIN PEDIATRIC in adults and pediatric patients. Clindamycin is widely distributed in body fluids and tissues (including bones). No significant levels of clindamycin are attained in the cerebrospinal fluid, even in the presence of inflamed meninges.

Metabolism

In vitro studies in human liver and intestinal microsomes indicated that clindamycin is predominantly metabolized by Cytochrome P450 3A4 (CYP3A4), with minor contribution from CYP3A5, to form clindamycin sulfoxide and a minor metabolite, N-desmethylclindamycin.

Excretion

Approximately 10% of the bioactivity is excreted in the urine and 3.6% in the feces; the remainder is excreted as bioinactive metabolites. The average serum half-life after doses of CLEOCIN PEDIATRIC is approximately two hours in pediatric patients.

Renal Impairment

Serum half-life of clindamycin is increased slightly in patients with markedly reduced renal function. Hemodialysis and peritoneal dialysis are not effective in removing clindamycin from the serum.

Use In Elderly

Pharmacokinetic studies in elderly volunteers (61-79 years) and younger adults (18-39 years) indicate that age alone does not alter clindamycin pharmacokinetics (clearance, elimination half-life, volume of distribution, and area under the serum concentration-time curve) after IV administration of clindamycin phosphate. After oral administration of clindamycin hydrochloride, elimination half-life is increased to approximately 4.0 hours (range 3.4 – 5.1 h) in the elderly compared to 3.2 hours (range 2.1 – 4.2 h) in younger adults; administration of clindamycin palmitate HCl resulted in a similar elimination half-life value of about 4.5 hours in elderly subjects. However, the extent of absorption is not different between age groups and no dosage alteration is necessary for the elderly with normal hepatic function and normal (age-adjusted) renal function1.

Mechanism Of Action

Clindamycin inhibits bacterial protein synthesis by binding to the 23S RNA of the 50S subunit of the ribosome. Clindamycin is bacteriostatic.

Resistance

Resistance to clindamycin is most often caused by modification of specific bases of the 23S ribosomal RNA. Cross-resistance between clindamycin and lincomycin is complete. Because the binding sites for these antibacterial drugs overlap, cross-resistance is sometimes observed among lincosamides, macrolides and streptogramin B. Macrolide-inducible resistance to clindamycin occurs in some isolates of macrolide-resistant bacteria. Macrolide-resistant isolates of staphylococci and beta-hemolytic streptococci should be screened for induction of clindamycin resistance using the D-zone test.

Antimicrobial Activity

  • Clindamycin has been shown to be active against most of the isolates of the following microorganisms, both in vitro and in clinical infections, as described in the INDICATIONS AND USAGE section.Gram-positive Bacteria Staphylococcus aureus (methicillin-susceptible strains) Streptococcus pneumoniae (penicillin-susceptible strains) Streptococcus pyogenes   Anaerobic Bacteria Clostridium perfringens Fusobacterium necrophorum Fusobacterium nucleatum Peptostreptococcus anaerobius Prevotella melaninogenicaAt least 90% of the microorganisms listed below exhibit in vitro minimum inhibitory concentrations (MICs) less than or equal to the clindamycin susceptible MIC breakpoint for organisms of a similar type to those shown in Table 1. However, the efficacy of clindamycin in treating clinical infections due to these microorganisms has not been established in adequate and well-controlled clinical trials.Gram-positive Bacteria Staphylococcus epidermidis (methicillin-susceptible strains) Streptococcus agalactiae Streptococcus anginosus Streptococcus mitis Streptococcus oralisAnaerobic Bacteria Actinomyces israelii Clostridium clostridioforme Eggerthella lenta Finegoldia (Peptostreptococcus) magna Micromonas (Peptostreptococcus) micros Prevotella bivia Prevotella intermedia Propionibacterium acnes

Susceptibility Testing Methods

When available, the clinical microbiology laboratory should provide cumulative in vitro susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug for treatment.

Dilution Techniques

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized test method2,3 (broth and/or agar). The MIC values should be interpreted according to the criteria provided in Table 1.

Diffusion Techniques

Quantitative methods that require the measurement of zone diameters can also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The zone size should be determined using a standardized method2,5. This procedure uses paper disks impregnated with 2 mcg of clindamycin to test the susceptibility of bacteria to clindamycin. The disk diffusion breakpoints are provided in Table 1.

Anaerobic Techniques

For anaerobic bacteria, the susceptibility to clindamycin can be determined by a standardized test method2,4. The MIC values obtained should be interpreted according to the criteria provided in Table 1.Table 1. Susceptibility Test Interpretive Criteria for ClindamycinPathogenSusceptibility Interpretive CriteriaMinimal Inhibitory Concentrations (MIC in mcg/mL)Disk Diffusion (Zone Diameters in mm)SIRSIRNA=not applicableStaphylococcus spp.≤0.51–2≥4≥2115–20≤14Streptococcuspneumoniaeand other Streptococcus spp.≤0.250.5≥1≥1916–18≤15Anaerobic Bacteria≤24≥8NANANAA report of Susceptible (S) indicates that the antimicrobial drug is likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable at the site of infection. A report of Intermediate (I) indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone that prevents small, uncontrolled technical factors from causing major discrepancies in interpretation.A report of Resistant (R) indicates that the antimicrobial drug is not likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable at the infection site; other therapy should be selected.

Quality Control

Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of the supplies and reagents used in the assay, and the techniques of the individuals performing the test.2,3,4,5 Standard clindamycin powder should provide the MIC ranges in Table 2. For the disk diffusion technique using the 2 mcg clindamycin disk the criteria provided in Table 2 should be achieved.Table 2. Acceptable Quality Control Ranges for ClindamycinQC StrainAcceptable Quality Control RangesMinimum Inhibitory Concentration Range (mcg/mL)Disk Diffusion Range (Zone Diameters in mm)NA=Not applicableATCC® is a registered trademark of the American Type Culture CollectionEnterococcus faecalisEnterococcus faecalis has been included in this table for quality control purposes only. ATCC 292124–16NAStaphylococcus aureus ATCC 292130.06–0.25NAStaphylococcus aureus ATCC 25923NA24–30Streptococcus pneumoniae ATCC 496190.03–0.1219–25Bacteroides fragilis ATCC 252850.5–2NABacteroides thetaiotaomicron ATCC 297412–8NAClostridium difficileQuality control for C. difficile is performed using the agar dilution method only, all other obligate anaerobes may be tested by either broth microdilution or agar dilution methods. ATCC 7000572–8NAEggerthella lenta ATCC 430550.06–0.25NA

Indications And Usage

CLEOCIN PEDIATRIC (clindamycin palmitate HCl) is indicated in the treatment of serious infections caused by susceptible anaerobic bacteria.Clindamycin is also indicated in the treatment of serious infections due to susceptible strains of streptococci, pneumococci and staphylococci. Its use should be reserved for penicillin-allergic patients or other patients for whom, in the judgment of the physician, a penicillin is inappropriate. Because of the risk of colitis, as described in the BOXED WARNING, before selecting clindamycin the physician should consider the nature of the infection and the suitability of less toxic alternatives (e.g., erythromycin).Anaerobes: Serious respiratory tract infections such as empyema, anaerobic pneumonitis and lung abscess; serious skin and soft tissue infections; septicemia; intra-abdominal infections such as peritonitis and intra-abdominal abscess (typically resulting from anaerobic organisms resident in the normal gastrointestinal tract); infections of the female pelvis and genital tract such as endometritis, nongonococcal tubo-ovarian abscess, pelvic cellulitis and postsurgical vaginal cuff infection.Streptococci: Serious respiratory tract infections; serious skin and soft tissue infections.Staphylococci: Serious respiratory tract infections; serious skin and soft tissue infections.Pneumococci: Serious respiratory tract infections. Bacteriologic studies should be performed to determine the causative organisms and their susceptibility to clindamycin.To reduce the development of drug-resistant bacteria and maintain the effectiveness of CLEOCIN PEDIATRIC and other antibacterial drugs, CLEOCIN PEDIATRIC should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Contraindications

This drug is contraindicated in individuals with a history of hypersensitivity to preparations containing clindamycin or lincomycin.

Warnings

See BOXED WARNING.

Clostridium Difficile Associated Diarrhea

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including CLEOCIN PEDIATRIC (Clindamycin Palmitate HCL) , and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

Anaphylactic And Severe Hypersensitivity Reactions

Anaphylactic shock and anaphylactic reactions have been reported (see ADVERSE REACTIONS).Severe hypersensitivity reactions, including severe skin reactions such as toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and Stevens-Johnson syndrome (SJS), some with fatal outcome, have been reported (see ADVERSE REACTIONS). In case of such an anaphylactic or severe hypersensitivity reaction, discontinue treatment permanently and institute appropriate therapy.A careful inquiry should be made concerning previous sensitivities to drugs and other allergens.

Usage In Meningitis

Since clindamycin does not diffuse adequately into the cerebrospinal fluid, the drug should not be used in the treatment of meningitis.

General

Review of experience to date suggests that a subgroup of older patients with associated severe illness may tolerate diarrhea less well. When clindamycin is indicated in these patients, they should be carefully monitored for change in bowel frequency.CLEOCIN PEDIATRIC (clindamycin palmitate HCl) should be prescribed with caution in individuals with a history of gastrointestinal disease, particularly colitis.CLEOCIN PEDIATRIC should be prescribed with caution in atopic individuals.Indicated surgical procedures should be performed in conjunction with antibiotic therapy.The use of CLEOCIN PEDIATRIC occasionally results in overgrowth of nonsusceptible organisms-particularly yeasts. Should superinfections occur, appropriate measures should be taken as indicated by the clinical situation.Clindamycin dosage modification may not be necessary in patients with renal disease. In patients with moderate to severe liver disease, prolongation of clindamycin half-life has been found. However, it was postulated from studies that when given every eight hours, accumulation should rarely occur. Therefore, dosage modification in patients with liver disease may not be necessary. However, periodic liver enzyme determinations should be made when treating patients with severe liver disease.Prescribing CLEOCIN PEDIATRIC in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Information For Patients

Patients should be counseled that antibacterial drugs including CLEOCIN PEDIATRIC should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When CLEOCIN PEDIATRIC is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by CLEOCIN PEDIATRIC or other antibacterial drugs in the future.Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

Laboratory Tests

During prolonged therapy, periodic liver and kidney function tests and blood counts should be performed.

Drug Interactions

Clindamycin has been shown to have neuromuscular blocking properties that may enhance the action of other neuromuscular blocking agents. Therefore, it should be used with caution in patients receiving such agents.Clindamycin is metabolized predominantly by CYP3A4, and to a lesser extent by CYP3A5, to the major metabolite clindamycin sulfoxide and minor metabolite N-desmethylclindamycin. Therefore inhibitors of CYP3A4 and CYP3A5 may increase plasma concentrations of clindamycin and inducers of these isoenzymes may reduce plasma concentrations of clindamycin. In the presence of strong CYP3A4 inhibitors, monitor for adverse reactions. In the presence of strong CYP3A4 inducers such as rifampicin, monitor for loss of effectiveness.In vitro studies indicate that clindamycin does not inhibit CYP1A2, CYP2C9, CYP2C19, CYP2E1 or CYP2D6 and only moderately inhibits CYP3A4.

Carcinogenesis, Mutagenesis, Impairment Of Fertility

Long term studies in animals have not been performed with clindamycin to evaluate carcinogenic potential. Genotoxicity tests performed included a rat micronucleus test and an Ames Salmonella reversion test. Both tests were negative.Fertility studies in rats treated orally with up to 300 mg/kg/day (approximately 1.6 times the highest recommended adult human oral dose based on mg/m2) revealed no effects on fertility or mating ability.

Pregnancy: Teratogenic Effects

Clindamycin should be used during the first trimester of pregnancy only if clearly needed. There are no adequate and well-controlled studies in pregnant women during the first trimester of pregnancy. Because animal reproduction studies are not always predictive of the human response, this drug should be used during pregnancy only if clearly needed. Reproduction studies performed in rats and mice using oral doses of clindamycin up to 600 mg/kg/day (3.2 and 1.6 times the highest recommended adult human dose based on mg/m2, respectively) or subcutaneous doses of clindamycin up to 250 mg/kg/day (1.3 and 0.7 times the highest recommended adult human dose based on mg/m2, respectively) revealed no evidence of teratogenicity.

Nursing Mothers

Clindamycin has been reported to appear in breast milk in the range of 0.7 to 3.8 mcg/mL. Clindamycin has the potential to cause adverse effects on the breastfed infant's gastrointestinal flora. If oral or intravenous clindamycin is required by a nursing mother, it is not a reason to discontinue breastfeeding, but an alternate drug may be preferred. Monitor the infant for possible adverse effects on the gastrointestinal flora, such as diarrhea, candidiasis (thrush, diaper rash) or rarely, blood in the stool indicating possible antibiotic-associated colitis.The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for clindamycin and any potential adverse effects on the breastfed child from clindamycin or from the underlying maternal condition.

Pediatric Use

When CLEOCIN PEDIATRIC is administered to the pediatric population (birth to 16 years), appropriate monitoring of organ system functions is desirable.

Geriatric Use

Clinical studies of clindamycin did not include sufficient numbers of patients age 65 and over to determine whether they respond differently from younger patients. However, other reported clinical experience indicates that antibiotic-associated colitis and diarrhea (due to Clostridium difficile) seen in association with most antibiotics occur more frequently in the elderly (>60 years) and may be more severe. These patients should be carefully monitored for the development of diarrhea.Pharmacokinetic studies with clindamycin have shown no clinically important differences between young subjects (18–39 years) and elderly subjects (61–79 years) with normal hepatic function and normal (age-adjusted) renal function after oral or intravenous administration.

Adverse Reactions

The following reactions have been reported with the use of clindamycin.Infections and infestations: Clostridium difficile colitisGastrointestinal: Abdominal pain, pseudomembranous colitis, esophagitis, nausea, vomiting and diarrhea (see BOXED WARNING). The onset of pseudomembranous colitis symptoms may occur during or after antibacterial treatment (see WARNINGS). An unpleasant or metallic taste has been reported after oral administration.Hypersensitivity Reactions: Generalized mild to moderate morbilliform-like (maculopapular) skin rashes are the most frequently reported adverse reactions. Vesiculobullous rashes, as well as urticaria, have been observed during drug therapy. Severe skin reactions such as Toxic Epidermal Necrolysis, some with fatal outcome, have been reported (See WARNINGS). Cases of Acute Generalized Exanthematous Pustulosis (AGEP), erythema multiforme, some resembling Stevens-Johnson syndrome, anaphylactic shock, anaphylactic reaction and hypersensitivity have also been reported. Skin and Mucous Membranes: Pruritus, vaginitis, angioedema, and rare instances of exfoliative dermatitis have been reported. (See Hypersensitivity Reactions.)Liver: Jaundice and abnormalities in liver function tests have been observed during clindamycin therapy.Renal: Although no direct relationship of clindamycin to renal damage has been established, renal dysfunction as evidenced by azotemia, oliguria, and/or proteinuria has been observed.Hematopoietic: Transient neutropenia (leukopenia) and eosinophilia have been reported. Reports of agranulocytosis and thrombocytopenia have been made. No direct etiologic relationship to concurrent clindamycin therapy could be made in any of the foregoing.Immune system: Drug reaction with eosinophilia and systemic symptoms (DRESS) cases have been reported.Musculoskeletal: Cases of polyarthritis have been reported.

Overdosage

Significant mortality was observed in mice at an intravenous dose of 855 mg/kg and in rats at an oral or subcutaneous dose of approximately 2618 mg/kg. In the mice, convulsions and depression were observed. Hemodialysis and peritoneal dialysis are not effective in removing clindamycin from the serum.

Dosage And Administration

If significant diarrhea occurs during therapy, this antibiotic should be discontinued (see BOXED WARNING).Concomitant administration of food does not adversely affect the absorption of clindamycin palmitate HCl contained in CLEOCIN PEDIATRIC Flavored Granules.Serious infections: 8–12 mg/kg/day (4–6 mg/lb/day) divided into 3 or 4 equal doses.Severe infections: 13–16 mg/kg/day (6.5–8 mg/lb/day) divided into 3 or 4 equal doses.More severe infections: 17–25 mg/kg/day (8.5–12.5 mg/lb/day) divided into 3 or 4 equal doses.In pediatric patients weighing 10 kg or less, ½ teaspoon (37.5 mg) three times a day should be considered the minimum recommended dose.Serious infections due to anaerobic bacteria are usually treated with CLEOCIN PHOSPHATE® Sterile Solution. However, in clinically appropriate circumstances, the physician may elect to initiate treatment or continue treatment with CLEOCIN PEDIATRIC.NOTE: In cases of β-hemolytic streptococcal infections, treatment should be continued for at least 10 days.Reconstitution Instructions: When reconstituted with water as follows, each 5 mL (teaspoon) of solution contains clindamycin palmitate HCl equivalent to 75 mg clindamycin.Reconstitute bottles of 100 mL with 75 mL of water. Add a large portion of the water and shake vigorously; add the remainder of the water and shake until the solution is uniform.Storage Conditions: Store at controlled room temperature 20° to 25°C (68° to 77°F) [see USP].Do NOT refrigerate the reconstituted solution; when chilled, the solution may thicken and be difficult to pour. The solution is stable for 2 weeks at room temperature.

How Supplied

CLEOCIN PEDIATRIC Flavored Granules for oral solution is available in bottles of 100 mL (NDC 0009-0760-04).When reconstituted as directed, each bottle yields a solution containing 75 mg of clindamycin per 5 mL.Rx only

References

  • Smith RB, Phillips JP: Evaluation of CLEOCIN HCl and CLEOCIN Phosphate in an Aged Population. Upjohn TR 8147-82-9122-021, December 1982.CLSI. Performance Standards for Antimicrobial Susceptibility Testing: 26th ed– CLSI supplement M 100S. Wayne, PA: Clinical and Laboratory Standards Institute; 2016.CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard – Tenth Edition. CLSI document M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.. CLSI. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard – Eighth Edition. CLSI document M11-A8. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard – Twelfth Edition. CLSI document M02-A12. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.

* Please review the disclaimer below.

Previous Code
0009-0758
Next Code
0009-0775