FDA Label for Saphris

View Indications, Usage & Precautions

    1. WARNING: INCREASED MORTALITY IN ELDERLY PATIENTS WITH DEMENTIA-RELATED PSYCHOSIS
    2. 1.1 SCHIZOPHRENIA
    3. 2.1 ADMINISTRATION INSTRUCTIONS
    4. 2.3 BIPOLAR DISORDER
    5. 2.4 DOSAGE IN SPECIAL POPULATIONS
    6. 2.5 SWITCHING FROM OTHER ANTIPSYCHOTICS
    7. 3 DOSAGE FORMS AND STRENGTHS
    8. 4 CONTRAINDICATIONS
    9. 5.1 INCREASED MORTALITY IN ELDERLY PATIENTS WITH DEMENTIA-RELATED PSYCHOSIS
    10. 5.2 CEREBROVASCULAR ADVERSE EVENTS, INCLUDING STROKE, IN ELDERLY PATIENTS WITH DEMENTIA-RELATED PSYCHOSIS
    11. 5.3 NEUROLEPTIC MALIGNANT SYNDROME
    12. 5.4 TARDIVE DYSKINESIA
    13. 5.5 HYPERGLYCEMIA AND DIABETES MELLITUS
    14. 5.6 WEIGHT GAIN
    15. 5.7 ORTHOSTATIC HYPOTENSION, SYNCOPE, AND OTHER HEMODYNAMIC EFFECTS
    16. 5.8 LEUKOPENIA, NEUTROPENIA, AND AGRANULOCYTOSIS
    17. 5.9 QT PROLONGATION
    18. 5.10 HYPERPROLACTINEMIA
    19. 5.11 SEIZURES
    20. 5.12 POTENTIAL FOR COGNITIVE AND MOTOR IMPAIRMENT
    21. 5.13 BODY TEMPERATURE REGULATION
    22. 5.14 SUICIDE
    23. 5.15 DYSPHAGIA
    24. 5.16 USE IN PATIENTS WITH CONCOMITANT ILLNESS
    25. 6.1 OVERALL ADVERSE REACTIONS PROFILE
    26. 6.3 POSTMARKETING EXPERIENCE
    27. 7 DRUG INTERACTIONS
    28. 7.1 POTENTIAL FOR OTHER DRUGS TO AFFECT SAPHRIS
    29. TERATOGENIC EFFECTS
    30. NONTERATOGENIC EFFECTS
    31. 8.2 LABOR AND DELIVERY
    32. 8.3 NURSING MOTHERS
    33. 8.4 PEDIATRIC USE
    34. 8.5 GERIATRIC USE
    35. 8.6 RENAL IMPAIRMENT
    36. 8.7 HEPATIC IMPAIRMENT
    37. 9.1 CONTROLLED SUBSTANCE
    38. 9.2 ABUSE
    39. 11 DESCRIPTION
    40. 12.1 MECHANISM OF ACTION
    41. 12.2 PHARMACODYNAMICS
    42. 12.3 PHARMACOKINETICS
    43. 14.1 SCHIZOPHRENIA
    44. 16 HOW SUPPLIED/STORAGE AND HANDLING
    45. 17.1 TABLET ADMINISTRATION
    46. 17.2 INCREASED MORTALITY IN ELDERLY PATIENTS WITH DEMENTIA-RELATED PSYCHOSIS
    47. 17.3 NEUROLEPTIC MALIGNANT SYNDROME
    48. 17.4 HYPERGLYCEMIA AND DIABETES MELLITUS
    49. 17.5 WEIGHT GAIN
    50. 17.6 ORTHOSTATIC HYPOTENSION
    51. 17.7 LEUKOPENIA/NEUTROPENIA
    52. 17.8 INTERFERENCE WITH COGNITIVE AND MOTOR PERFORMANCE
    53. 17.9 HEAT EXPOSURE AND DEHYDRATION
    54. 17.10 CONCOMITANT MEDICATION AND ALCOHOL
    55. 17.11 PREGNANCY AND NURSING
    56. PACKAGE LABEL.PRINCIPAL DISPLAY PANEL

Saphris Product Label

The following document was submitted to the FDA by the labeler of this product Stat Rx Usa Llc. The document includes published materials associated whith this product with the essential scientific information about this product as well as other prescribing information. Product labels may durg indications and usage, generic names, contraindications, active ingredients, strength dosage, routes of administration, appearance, warnings, inactive ingredients, etc.



Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death. Analyses of 17 placebo-controlled trials (modal duration of 10 weeks), largely in patients taking atypical antipsychotic drugs, revealed a risk of death in the drug-treated patients of between 1.6 to 1.7 times that seen in placebo-treated patients. Over the course of a typical 10-week controlled trial, the rate of death in drug-treated patients was about 4.5%, compared to a rate of about 2.6% in the placebo group. Although the causes of death were varied, most of the deaths appeared to be either cardiovascular (e.g., heart failure, sudden death) or infectious (e.g., pneumonia) in nature. Observational studies suggest that, similar to atypical antipsychotic drugs, treatment with conventional antipsychotic drugs may increase mortality. The extent to which the findings of increased mortality in observational studies may be attributed to the antipsychotic drug as opposed to some characteristic(s) of the patients is not clear. SAPHRIS® (asenapine) is not approved for the treatment of patients with dementia-related psychosis [see Warnings and Precautions (5.1)].


1.1 Schizophrenia



SAPHRIS is indicated for the treatment of schizophrenia. The efficacy of SAPHRIS was established in two 6-week trials and one maintenance trial in adults [see Clinical Studies (14.1)].


2.1 Administration Instructions



SAPHRIS is a sublingual tablet. To ensure optimal absorption, patients should be instructed to place the tablet under the tongue and allow it to dissolve completely. The tablet will dissolve in saliva within seconds. SAPHRIS sublingual tablets should not be crushed, chewed, or swallowed [see Clinical Pharmacology (12.3)]. Patients should be instructed to not eat or drink for 10 minutes after administration [see Clinical Pharmacology (12.3) and Patient Counseling Information (17.1)].


2.3 Bipolar Disorder



Usual Dose for Acute Treatment of Manic or Mixed Episodes Associated with Bipolar I Disorder in Adults:

Monotherapy: The recommended starting dose of SAPHRIS, and the dose maintained by 90% of the patients studied, is 10 mg twice daily. The dose can be decreased to 5 mg twice daily if warranted by adverse effects or based on individual tolerability.

In controlled monotherapy trials, the starting dose for SAPHRIS was 10 mg twice daily. On the second and subsequent days of the trials, the dose could be lowered to 5 mg twice daily, based on tolerability, but less than 10% of patients had their dose reduced. The safety of doses above 10 mg twice daily has not been evaluated in clinical trials.

Adjunctive Therapy: The recommended starting dose of SAPHRIS is 5 mg twice daily when administered as adjunctive therapy with either lithium or valproate. Depending on the clinical response and tolerability in the individual patient, the dose can be increased to 10 mg twice daily. The safety of doses above 10 mg twice daily as adjunctive therapy with lithium or valproate has not been evaluated in clinical trials.


2.4 Dosage In Special Populations



In a study of subjects with hepatic impairment who were treated with a single dose of SAPHRIS 5 mg, there were increases in asenapine exposures (compared to subjects with normal hepatic function), that correlated with the degree of hepatic impairment. While the results indicated that no dosage adjustments are required in patients with mild (Child-Pugh A) or moderate (Child-Pugh B) hepatic impairment, there was a 7-fold increase (on average) in asenapine concentrations in subjects with severe hepatic impairment (Child-Pugh C) compared to the concentrations of those in subjects with normal hepatic function. Therefore, SAPHRIS is not recommended in patients with severe hepatic impairment [see Use in Special Populations (8.7)]. Dosage adjustments are not routinely required on the basis of age, gender, race, or renal impairment status [see Use in Specific Populations (8.4, 8.5, 8.6) and Clinical Pharmacology (12.3)].


2.5 Switching From Other Antipsychotics



There are no systematically collected data to specifically address switching patients with schizophrenia or bipolar mania from other antipsychotics to SAPHRIS or concerning concomitant administration with other antipsychotics. While immediate discontinuation of the previous antipsychotic treatment may be acceptable for some patients with schizophrenia, more gradual discontinuation may be most appropriate for others. In all cases, the period of overlapping antipsychotic administration should be minimized.


3 Dosage Forms And Strengths



  • SAPHRIS 5-mg tablets are round, white- to off-white sublingual tablets, with "5" on one side.
  • SAPHRIS 10-mg tablets are round, white- to off-white sublingual tablets, with "10" on one side.
  • SAPHRIS 5-mg tablets, black cherry flavor, are round, white- to off-white sublingual tablets, with "5" on one side within a circle.
  • SAPHRIS 10-mg tablets, black cherry flavor, are round, white- to off-white sublingual tablets, with "10" on one side within a circle.

4 Contraindications



None




Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death. SAPHRIS is not approved for the treatment of patients with dementia-related psychosis [see Boxed Warning].




In placebo-controlled trials with risperidone, aripiprazole, and olanzapine in elderly subjects with dementia, there was a higher incidence of cerebrovascular adverse reactions (cerebrovascular accidents and transient ischemic attacks) including fatalities compared to placebo-treated subjects. SAPHRIS is not approved for the treatment of patients with dementia-related psychosis [see also Boxed Warning and Warnings and Precautions (5.1)].


5.3 Neuroleptic Malignant Syndrome



A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with administration of antipsychotic drugs, including SAPHRIS. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.

The diagnostic evaluation of patients with this syndrome is complicated. It is important to exclude cases where the clinical presentation includes both serious medical illness (e.g. pneumonia, systemic infection) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system pathology.

The management of NMS should include: 1) immediate discontinuation of antipsychotic drugs and other drugs not essential to concurrent therapy; 2) intensive symptomatic treatment and medical monitoring; and 3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for NMS.

If a patient requires antipsychotic drug treatment after recovery from NMS, the potential reintroduction of drug therapy should be carefully considered. The patient should be carefully monitored, since recurrences of NMS have been reported.


5.4 Tardive Dyskinesia



A syndrome of potentially irreversible, involuntary, dyskinetic movements can develop in patients treated with antipsychotic drugs. Although the prevalence of the syndrome appears to be highest among the elderly, especially elderly women, it is impossible to rely upon prevalence estimates to predict, at the inception of antipsychotic treatment, which patients are likely to develop the syndrome. Whether antipsychotic drug products differ in their potential to cause Tardive Dyskinesia (TD) is unknown.

The risk of developing TD and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic drugs administered to the patient increase. However, the syndrome can develop, although much less commonly, after relatively brief treatment periods at low doses.

There is no known treatment for established cases of TD, although the syndrome may remit, partially or completely, if antipsychotic treatment is withdrawn. Antipsychotic treatment, itself, however, may suppress (or partially suppress) the signs and symptoms of the syndrome and thereby may possibly mask the underlying process. The effect that symptomatic suppression has upon the long-term course of the syndrome is unknown.

Given these considerations, SAPHRIS should be prescribed in a manner that is most likely to minimize the occurrence of TD. Chronic antipsychotic treatment should generally be reserved for patients who suffer from a chronic illness that (1) is known to respond to antipsychotic drugs, and (2) for whom alternative, equally effective, but potentially less harmful treatments are not available or appropriate. In patients who do require chronic treatment, the smallest dose and the shortest duration of treatment producing a satisfactory clinical response should be sought. The need for continued treatment should be reassessed periodically.

If signs and symptoms of TD appear in a patient on SAPHRIS, drug discontinuation should be considered. However, some patients may require treatment with SAPHRIS despite the presence of the syndrome.


5.5 Hyperglycemia And Diabetes Mellitus



Hyperglycemia, in some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients treated with atypical antipsychotics. Assessment of the relationship between atypical antipsychotic use and glucose abnormalities is complicated by the possibility of an increased background risk of diabetes mellitus in patients with schizophrenia and the increasing incidence of diabetes mellitus in the general population. Given these confounders, the relationship between atypical antipsychotic use and hyperglycemia-related adverse reactions is not completely understood. However, epidemiological studies suggest an increased risk of treatment-emergent hyperglycemia-related adverse events in patients treated with the atypical antipsychotics included in these studies. Because SAPHRIS was not marketed at the time these studies were performed, it is not known if SAPHRIS is associated with this increased risk. Precise risk estimates for hyperglycemia-related adverse events in patients treated with atypical antipsychotics are not available.

Patients with an established diagnosis of diabetes mellitus who are started on atypical antipsychotics should be monitored regularly for worsening of glucose control. Patients with risk factors for diabetes mellitus (e.g., obesity, family history of diabetes) who are starting treatment with atypical antipsychotics should undergo fasting blood glucose testing at the beginning of treatment and periodically during treatment. Any patient treated with atypical antipsychotics should be monitored for symptoms of hyperglycemia including polydipsia, polyuria, polyphagia, and weakness. Patients who develop symptoms of hyperglycemia during treatment with atypical antipsychotics should undergo fasting blood glucose testing. In some cases, hyperglycemia has resolved when the atypical antipsychotic was discontinued; however, some patients required continuation of anti-diabetic treatment despite discontinuation of the antipsychotic drug.


5.6 Weight Gain



Increases in weight have been observed in pre-marketing clinical trials with SAPHRIS. Patients receiving SAPHRIS should receive regular monitoring of weight [see Patient Counseling Information (17.5)].

In short-term schizophrenia and bipolar mania trials, there were differences in mean weight gain between SAPHRIS-treated and placebo-treated patients. In short-term, placebo-controlled schizophrenia trials, the mean weight gain was 1.1 kg for SAPHRIS-treated patients compared to 0.1 kg for placebo-treated patients. The proportion of patients with a ≥7% increase in body weight (at Endpoint) was 4.9% for SAPHRIS-treated patients versus 2% for placebo-treated patients. In short-term, placebo-controlled bipolar mania trials, the mean weight gain for SAPHRIS-treated patients was 1.3 kg compared to 0.2 kg for placebo-treated patients. The proportion of patients with a ≥7% increase in body weight (at Endpoint) was 5.8% for SAPHRIS-treated patients versus 0.5% for placebo-treated patients.

In a 52-week, double-blind, comparator-controlled trial of patients with schizophrenia or schizoaffective disorder, the mean weight gain from baseline was 0.9 kg. The proportion of patients with a ≥7% increase in body weight (at Endpoint) was 14.7%. Table 1 provides the mean weight change from baseline and the proportion of patients with a weight gain of ≥7% categorized by Body Mass Index (BMI) at baseline:

TABLE 1: Weight Change Results Categorized by BMI at Baseline: Comparator-Controlled 52-Week Study in Schizophrenia
BMI <23
SAPHRIS
(N=295)
BMI 23 – ≤27
SAPHRIS
(N=290)
BMI >27
SAPHRIS
(N=302)
Mean change from Baseline (kg)1.710
% with ≥7% increase in body weight22%13%9%

5.7 Orthostatic Hypotension, Syncope, And Other Hemodynamic Effects



SAPHRIS may induce orthostatic hypotension and syncope in some patients, especially early in treatment, because of its α1-adrenergic antagonist activity. In short-term schizophrenia trials, syncope was reported in 0.2% (1/572) of patients treated with therapeutic doses (5 mg or 10 mg twice daily) of SAPHRIS, compared to 0.3% (1/378) of patients treated with placebo. In short-term bipolar mania trials, syncope was reported in 0.3% (1/379) of patients treated with therapeutic doses (5 mg or 10 mg twice daily) of SAPHRIS, compared to 0% (0/203) of patients treated with placebo. During pre-marketing clinical trials with SAPHRIS, including long-term trials without comparison to placebo, syncope was reported in 0.6% (11/1953) of patients treated with SAPHRIS.

Four normal volunteers in clinical pharmacology studies treated with either intravenous, oral, or sublingual SAPHRIS experienced hypotension, bradycardia, and sinus pauses. These spontaneously resolved in 3 cases, but the fourth subject received external cardiac massage. The risk of this sequence of hypotension, bradycardia, and sinus pause might be greater in nonpsychiatric patients compared to psychiatric patients who are possibly more adapted to certain effects of psychotropic drugs.

Patients should be instructed about nonpharmacologic interventions that help to reduce the occurrence of orthostatic hypotension (e.g., sitting on the edge of the bed for several minutes before attempting to stand in the morning and slowly rising from a seated position). SAPHRIS should be used with caution in (1) patients with known cardiovascular disease (history of myocardial infarction or ischemic heart disease, heart failure or conduction abnormalities), cerebrovascular disease, or conditions which would predispose patients to hypotension (dehydration, hypovolemia, and treatment with antihypertensive medications); and (2) in the elderly. SAPHRIS should be used cautiously when treating patients who receive treatment with other drugs that can induce hypotension, bradycardia, respiratory or central nervous system depression [see Drug Interactions (7)]. Monitoring of orthostatic vital signs should be considered in all such patients, and a dose reduction should be considered if hypotension occurs.


5.8 Leukopenia, Neutropenia, And Agranulocytosis



In clinical trial and postmarketing experience, events of leukopenia/neutropenia have been reported temporally related to antipsychotic agents, including SAPHRIS. Agranulocytosis (including fatal cases) has been reported with other agents in the class.

Possible risk factors for leukopenia/neutropenia include pre-existing low white blood cell count (WBC) and history of drug induced leukopenia/neutropenia. Patients with a pre-existing low WBC or a history of drug induced leukopenia/neutropenia should have their complete blood count (CBC) monitored frequently during the first few months of therapy and SAPHRIS should be discontinued at the first sign of decline in WBC in the absence of other causative factors.

Patients with neutropenia should be carefully monitored for fever or other symptoms or signs of infection and treated promptly if such symptoms or signs occur. Patients with severe neutropenia (absolute neutrophil count <1000/mm3) should discontinue SAPHRIS and have their WBC followed until recovery.


5.9 Qt Prolongation



The effects of SAPHRIS on the QT/QTc interval were evaluated in a dedicated QT study. This trial involved SAPHRIS doses of 5 mg, 10 mg, 15 mg, and 20 mg twice daily, and placebo, and was conducted in 151 clinically stable patients with schizophrenia, with electrocardiographic assessments throughout the dosing interval at baseline and steady state. At these doses, SAPHRIS was associated with increases in QTc interval ranging from 2 to 5 msec compared to placebo. No patients treated with SAPHRIS experienced QTc increases ≥60 msec from baseline measurements, nor did any patient experience a QTc of ≥500 msec.

Electrocardiogram (ECG) measurements were taken at various time points during the SAPHRIS clinical trial program (5 mg or 10 mg twice daily doses). Post-baseline QT prolongations exceeding 500 msec were reported at comparable rates for SAPHRIS and placebo in these short-term trials. There were no reports of Torsade de Pointes or any other adverse reactions associated with delayed ventricular repolarization.

The use of SAPHRIS should be avoided in combination with other drugs known to prolong QTc including Class 1A antiarrhythmics (e.g., quinidine, procainamide) or Class 3 antiarrhythmics (e.g., amiodarone, sotalol), antipsychotic medications (e.g., ziprasidone, chlorpromazine, thioridazine), and antibiotics (e.g., gatifloxacin, moxifloxacin). SAPHRIS should also be avoided in patients with a history of cardiac arrhythmias and in other circumstances that may increase the risk of the occurrence of torsade de pointes and/or sudden death in association with the use of drugs that prolong the QTc interval, including bradycardia; hypokalemia or hypomagnesemia; and presence of congenital prolongation of the QT interval.


5.10 Hyperprolactinemia



Like other drugs that antagonize dopamine D2 receptors, SAPHRIS can elevate prolactin levels, and the elevation can persist during chronic administration. Hyperprolactinemia may suppress hypothalamic GnRH, resulting in reduced pituitary gonadotropin secretion. This, in turn, may inhibit reproductive function by impairing gonadal steroidogenesis in both female and male patients. Galactorrhea, amenorrhea, gynecomastia, and impotence have been reported in patients receiving prolactin-elevating compounds. Long-standing hyperprolactinemia when associated with hypogonadism may lead to decreased bone density in both female and male subjects. In SAPHRIS clinical trials, the incidences of adverse events related to abnormal prolactin levels were 0.4% versus 0% for placebo [see Adverse Reactions (6.2)].

Tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin-dependent in vitro, a factor of potential importance if the prescription of these drugs is considered in a patient with previously-detected breast cancer. Neither clinical studies nor epidemiologic studies conducted to date have shown an association between chronic administration of this class of drugs and tumorigenesis in humans, but the available evidence is too limited to be conclusive.


5.11 Seizures



Seizures were reported in 0% and 0.3% (0/572, 1/379) of patients treated with doses of 5 mg and 10 mg twice daily of SAPHRIS, respectively, compared to 0% (0/503, 0/203) of patients treated with placebo in short-term schizophrenia and bipolar mania trials, respectively. During pre-marketing clinical trials with SAPHRIS, including long-term trials without comparison to placebo, seizures were reported in 0.3% (5/1953) of patients treated with SAPHRIS. As with other antipsychotic drugs, SAPHRIS should be used with caution in patients with a history of seizures or with conditions that potentially lower the seizure threshold, e.g., Alzheimer's dementia. Conditions that lower the seizure threshold may be more prevalent in patients 65 years or older.


5.12 Potential For Cognitive And Motor Impairment



Somnolence was reported in patients treated with SAPHRIS. It was usually transient with the highest incidence reported during the first week of treatment. In short-term, fixed-dose, placebo-controlled schizophrenia trials, somnolence was reported in 15% (41/274) of patients on SAPHRIS 5 mg twice daily and in 13% (26/208) of patients on SAPHRIS 10 mg twice daily compared to 7% (26/378) of placebo patients. In short-term, placebo-controlled bipolar mania trials of therapeutic doses (5–10 mg twice daily), somnolence was reported in 24% (90/379) of patients on SAPHRIS compared to 6% (13/203) of placebo patients. During pre-marketing clinical trials with SAPHRIS, including long-term trials without comparison to placebo, somnolence was reported in 18% (358/1953) of patients treated with SAPHRIS. Somnolence (including sedation) led to discontinuation in 0.6% (12/1953) of patients in short-term, placebo-controlled trials.

Patients should be cautioned about performing activities requiring mental alertness, such as operating hazardous machinery or operating a motor vehicle, until they are reasonably certain that SAPHRIS therapy does not affect them adversely.


5.13 Body Temperature Regulation



Disruption of the body's ability to reduce core body temperature has been attributed to antipsychotic agents. In the short-term placebo-controlled trials for both schizophrenia and acute bipolar disorder, the incidence of adverse reactions suggestive of body temperature increases was low (≤1%) and comparable to placebo. During pre-marketing clinical trials with SAPHRIS, including long-term trials without comparison to placebo, the incidence of adverse reactions suggestive of body temperature increases (pyrexia and feeling hot) was ≤1%. Appropriate care is advised when prescribing SAPHRIS for patients who will be experiencing conditions that may contribute to an elevation in core body temperature, e.g., exercising strenuously, exposure to extreme heat, receiving concomitant medication with anticholinergic activity, or being subject to dehydration.


5.14 Suicide



The possibility of a suicide attempt is inherent in psychotic illnesses and bipolar disorder, and close supervision of high-risk patients should accompany drug therapy. Prescriptions for SAPHRIS should be written for the smallest quantity of tablets consistent with good patient management in order to reduce the risk of overdose.


5.15 Dysphagia



Esophageal dysmotility and aspiration have been associated with antipsychotic drug use. Dysphagia was reported in 0.2% and 0% (1/572, 0/379) of patients treated with therapeutic doses (5–10 mg twice daily) of SAPHRIS as compared to 0% (0/378, 0/203) of patients treated with placebo in short-term schizophrenia and bipolar mania trials, respectively. During pre-marketing clinical trials with SAPHRIS, including long-term trials without comparison to placebo, dysphagia was reported in 0.1% (2/1953) of patients treated with SAPHRIS.

Aspiration pneumonia is a common cause of morbidity and mortality in elderly patients, in particular those with advanced Alzheimer's dementia. SAPHRIS is not indicated for the treatment of dementia-related psychosis, and should not be used in patients at risk for aspiration pneumonia [see also Warnings and Precautions (5.1)].


5.16 Use In Patients With Concomitant Illness



Clinical experience with SAPHRIS in patients with certain concomitant systemic illnesses is limited [see Clinical Pharmacology (12.3)].

SAPHRIS has not been evaluated in patients with a recent history of myocardial infarction or unstable heart disease. Patients with these diagnoses were excluded from pre-marketing clinical trials. Because of the risk of orthostatic hypotension with SAPHRIS, caution should be observed in cardiac patients [see Warnings and Precautions (5.6)].


6.1 Overall Adverse Reactions Profile



The following adverse reactions are discussed in more detail in other sections of the labeling:

  • Use in Elderly Patients with Dementia-Related Psychosis [see Boxed Warning and Warnings and Precautions (5.1 and 5.2)]
  • Neuroleptic Malignant Syndrome [see Warnings and Precautions (5.3)]
  • Tardive Dyskinesia [see Warnings and Precautions (5.4)]
  • Hyperglycemia and Diabetes Mellitus [see Warnings and Precautions (5.5)]
  • Weight Gain [see Warnings and Precautions (5.6)]
  • Orthostatic Hypotension, Syncope, and other Hemodynamic Effects [see Warnings and Precautions (5.7)]
  • Leukopenia, Neutropenia, and Agranulocytosis [see Warnings and Precautions (5.8)]
  • QT Interval Prolongation [see Warnings and Precautions (5.9)]
  • Hyperprolactinemia [see Warnings and Precautions (5.10)]
  • Seizures [see Warnings and Precautions (5.11)]
  • Potential for Cognitive and Motor Impairment [see Warnings and Precautions (5.12)]
  • Body Temperature Regulation [see Warnings and Precautions (5.13)]
  • Suicide [see Warnings and Precautions (5.14)]
  • Dysphagia [see Warnings and Precautions (5.15)]
  • Use in Patients with Concomitant Illness [see Warnings and Precautions (5.16)]
  • The most common adverse reactions (≥5% and at least twice the rate of placebo) reported with acute treatment in schizophrenia were akathisia, oral hypoesthesia, and somnolence. The safety profile of SAPHRIS in the maintenance treatment of schizophrenia was similar to that seen with acute treatment.

    The most common adverse reactions (≥5% and at least twice the rate of placebo) reported with acute monotherapy treatment of manic or mixed episodes associated with bipolar I disorder were somnolence, dizziness, extrapyramidal symptoms other than akathisia, and weight increased and during the adjunctive therapy trial in bipolar disorder were somnolence and oral hypoesthesia.

    The information below is derived from a clinical trial database for SAPHRIS consisting of over 4565 patients and/or normal subjects exposed to one or more sublingual doses of SAPHRIS. A total of 1314 SAPHRIS-treated patients were treated for at least 24 weeks and 785 SAPHRIS-treated patients had at least 52 weeks of exposure at therapeutic doses.

    The stated frequencies of adverse reactions represent the proportion of individuals who experienced a treatment-emergent adverse event of the type listed. A reaction was considered treatment emergent if it occurred for the first time or worsened while receiving therapy following baseline evaluation.

    The figures in the tables and tabulations cannot be used to predict the incidence of side effects in the course of usual medical practice where patient characteristics and other factors differ from those that prevailed in the clinical trials. Similarly, the cited frequencies cannot be compared with figures obtained from other clinical investigations involving different treatment, uses, and investigators. The cited figures, however, do provide the prescriber with some basis for estimating the relative contribution of drug and nondrug factors to the adverse reaction incidence in the population studied.


6.3 Postmarketing Experience



Adverse reactions have been identified during postapproval use of SAPHRIS. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

There have been postmarketing reports of serious hypersensitivity reactions in patients treated with SAPHRIS, including swollen tongue and swollen throat (pharyngeal edema). The local anesthetic properties of asenapine should be considered as a possible alternative etiology for the oropharyngeal symptoms.


7 Drug Interactions



The risks of using SAPHRIS in combination with other drugs have not been extensively evaluated. Given the primary CNS effects of SAPHRIS, caution should be used when it is taken in combination with other centrally-acting drugs or alcohol.

Because of its α1-adrenergic antagonism with potential for inducing hypotension, SAPHRIS may enhance the effects of certain antihypertensive agents.


7.1 Potential For Other Drugs To Affect Saphris



Asenapine is cleared primarily through direct glucuronidation by UGT1A4 and oxidative metabolism by cytochrome P450 isoenzymes (predominantly CYP1A2). The potential effects of inhibitors of several of these enzyme pathways on asenapine clearance were studied.

TABLE 5: Summary of Effect of Coadministered Drugs on Exposure to Asenapine in Healthy Volunteers
Coadministered drug (Postulated effect on CYP450/UGT)Dose schedulesEffect on asenapine pharmacokineticsRecommendation
Coadministered drugAsenapineCmaxAUC0–∞
Fluvoxamine
(CYP1A2 inhibitor)
25 mg twice daily for 8 days5 mg Single Dose+13%+29%Coadminister with caution

The full therapeutic dose of fluvoxamine would be expected to cause a greater increase in asenapine plasma concentrations. AUC: Area under the curve.

Paroxetine
(CYP2D6 inhibitor)
20 mg once daily for 9 days5 mg Single Dose–13%–9%No SAPHRIS dose adjustment required [see Drug Interactions (7.2)]
Imipramine (CYP1A2/2C19/3A4 inhibitor)75 mg Single Dose5 mg Single Dose+17%+10%No SAPHRIS dose adjustment required
Cimetidine (CYP3A4/2D6/1A2 inhibitor)800 mg twice daily for 8 days5 mg Single Dose–13%+1%No SAPHRIS dose adjustment required
Carbamazepine
(CYP3A4 inducer)
400 mg twice daily for 15 days5 mg Single Dose–16%–16%No SAPHRIS dose adjustment required
Valproate
(UGT1A4 inhibitor)
500 mg twice daily for 9 days5 mg Single Dose2%–1%No SAPHRIS dose adjustment required

A population pharmacokinetic analysis indicated that the concomitant administration of lithium had no effect on the pharmacokinetics of asenapine.


Teratogenic Effects



Pregnancy Category C: There are no adequate and well-controlled studies of SAPHRIS in pregnant women.

In animal studies, asenapine increased post-implantation loss and decreased pup weight and survival at doses similar to or less than recommended clinical doses. In these studies there was no increase in the incidence of structural abnormalities caused by asenapine.

Asenapine was not teratogenic in reproduction studies in rats and rabbits at intravenous doses up to 1.5 mg/kg in rats and 0.44 mg/kg in rabbits. These doses are 0.7 and 0.4 times, respectively, the maximum recommended human dose (MRHD) of 10 mg twice daily given sublingually on a mg/m2 basis. Plasma levels of asenapine were measured in the rabbit study, and the area under the curve (AUC) at the highest dose tested was 2 times that in humans receiving the MRHD.

In a study in which rats were treated from day 6 of gestation through day 21 postpartum with intravenous doses of asenapine of 0.3, 0.9, and 1.5 mg/kg/day (0.15, 0.4, and 0.7 times the MRHD of 10 mg twice daily given sublingually on a mg/m2 basis), increases in post-implantation loss and early pup deaths were seen at all doses, and decreases in subsequent pup survival and weight gain were seen at the two higher doses. A cross-fostering study indicated that the decreases in pup survival were largely due to prenatal drug effects. Increases in post-implantation loss and decreases in pup weight and survival were also seen when pregnant rats were dosed orally with asenapine.


Nonteratogenic Effects



Non-teratogenic Effects

Neonates exposed to antipsychotic drugs during the third trimester of pregnancy are at risk for extrapyramidal and/or withdrawal symptoms following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress and feeding disorder in these neonates. These complications have varied in severity; while in some cases symptoms have been self-limited, in other cases neonates have required intensive care unit support and prolonged hospitalization. SAPHRIS (asenapine) should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.


8.2 Labor And Delivery



The effect of SAPHRIS on labor and delivery in humans is unknown.


8.3 Nursing Mothers



Asenapine is excreted in milk of rats during lactation. It is not known whether asenapine or its metabolites are excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when SAPHRIS is administered to a nursing woman. It is recommended that women receiving SAPHRIS should not breast feed.


8.4 Pediatric Use



Safety and effectiveness in pediatric patients have not been established.


8.5 Geriatric Use



Clinical studies of SAPHRIS in the treatment of schizophrenia and bipolar mania did not include sufficient numbers of patients aged 65 and over to determine whether or not they respond differently than younger patients. Of the approximately 2250 patients in pre-marketing clinical studies of SAPHRIS, 1.1% (25) were 65 years of age or over. Multiple factors that might increase the pharmacodynamic response to SAPHRIS, causing poorer tolerance or orthostasis, could be present in elderly patients, and these patients should be monitored carefully.

Elderly patients with dementia-related psychosis treated with SAPHRIS are at an increased risk of death compared to placebo. SAPHRIS is not approved for the treatment of patients with dementia-related psychosis [see Boxed Warning].


8.6 Renal Impairment



The exposure of asenapine following a single dose of 5 mg was similar among subjects with varying degrees of renal impairment and subjects with normal renal function [see Clinical Pharmacology (12.3)].


8.7 Hepatic Impairment



In subjects with severe hepatic impairment who were treated with a single dose of SAPHRIS 5 mg, asenapine exposures (on average), were 7-fold higher than the exposures observed in subjects with normal hepatic function. Thus, SAPHRIS is not recommended in patients with severe hepatic impairment (Child-Pugh C) [see Dosage and Administration (2.4) and Clinical Pharmacology (12.3)].


9.1 Controlled Substance



SAPHRIS is not a controlled substance.


9.2 Abuse



SAPHRIS has not been systematically studied in animals or humans for its abuse potential or its ability to induce tolerance or physical dependence. Thus, it is not possible to predict the extent to which a CNS-active drug will be misused, diverted and/or abused once it is marketed. Patients should be evaluated carefully for a history of drug abuse, and such patients should be observed carefully for signs that they are misusing or abusing SAPHRIS (e.g., drug-seeking behavior, increases in dose).


11 Description



SAPHRIS is a psychotropic agent that is available for sublingual administration. Asenapine belongs to the class dibenzo-oxepino pyrroles. The chemical designation is (3aRS,12bRS)-5-Chloro-2-methyl-2,3,3a,12b-tetrahydro-1Hdibenzo[2,3:6,7]oxepino[4,5-c]pyrrole (2Z)-2-butenedioate (1:1). Its molecular formula is C17H16ClNO•C4H4O4 and its molecular weight is 401.84 (free base: 285.8). The chemical structure is:

Asenapine is a white- to off-white powder.

SAPHRIS is supplied for sublingual administration in tablets containing 5-mg or 10-mg asenapine; inactive ingredients include gelatin and mannitol.

SAPHRIS, black cherry flavor, is supplied for sublingual administration in tablets containing 5-mg or 10-mg asenapine; inactive ingredients include gelatin, mannitol, sucralose, and black cherry flavor.


12.1 Mechanism Of Action



The mechanism of action of asenapine, as with other drugs having efficacy in schizophrenia and bipolar disorder, is unknown. It has been suggested that the efficacy of asenapine in schizophrenia is mediated through a combination of antagonist activity at D2 and 5-HT2A receptors.


12.2 Pharmacodynamics



Asenapine exhibits high affinity for serotonin 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5, 5-HT6, and 5-HT7 receptors (Ki values of 2.5, 4.0, 0.06, 0.16, 0.03, 1.6, 0.25, and 0.13 nM), dopamine D2, D3, D4, and D1 receptors (Ki values of 1.3, 0.42, 1.1, and 1.4 nM), α1 and α2-adrenergic receptors (Ki values of 1.2 and 1.2 nM), and histamine H1 receptors (Ki value 1.0 nM), and moderate affinity for H2 receptors (Ki value of 6.2 nM). In in vitro assays asenapine acts as an antagonist at these receptors. Asenapine has no appreciable affinity for muscarinic cholinergic receptors (e.g., Ki value of 8128 nM for M1).


12.3 Pharmacokinetics



Following a single 5-mg dose of SAPHRIS, the mean Cmax was approximately 4 ng/mL and was observed at a mean tmax of 1 hour. Elimination of asenapine is primarily through direct glucuronidation by UGT1A4 and oxidative metabolism by cytochrome P450 isoenzymes (predominantly CYP1A2). Following an initial more rapid distribution phase, the mean terminal half-life is approximately 24 hrs. With multiple-dose twice-daily dosing, steady-state is attained within 3 days. Overall, steady-state asenapine pharmacokinetics are similar to single-dose pharmacokinetics.


14.1 Schizophrenia



The efficacy of SAPHRIS in the treatment of schizophrenia in adults was evaluated in three fixed-dose, short-term (6 week), randomized, double-blind, placebo-controlled, and active-controlled (haloperidol, risperidone, and olanzapine) trials of adult patients who met DSM-IV criteria for schizophrenia and were having an acute exacerbation of their schizophrenic illness. In two of the three trials SAPHRIS demonstrated superior efficacy to placebo. In a third trial, SAPHRIS could not be distinguished from placebo; however, an active control in that trial was superior to placebo.

In the two positive trials for SAPHRIS, the primary efficacy rating scale was the Positive and Negative Syndrome Scale (PANSS), which assesses the symptoms of schizophrenia. The primary endpoint was change from baseline to endpoint on the PANSS total score. The results of the SAPHRIS trials in schizophrenia follow:

In trial 1, a 6-week trial (n=174), comparing SAPHRIS (5 mg twice daily) to placebo, SAPHRIS 5 mg twice daily was statistically superior to placebo on the PANSS total score.

In trial 2, a 6-week trial (n=448), comparing two fixed doses of SAPHRIS (5 mg and 10 mg twice daily) to placebo, SAPHRIS 5 mg twice daily was statistically superior to placebo on the PANSS total score. SAPHRIS 10 mg twice daily showed no added benefit compared to 5 mg twice daily and was not significantly different from placebo.

An examination of population subgroups did not reveal any clear evidence of differential responsiveness on the basis of age, gender or race.

Maintenance of efficacy has been demonstrated in a placebo-controlled, double-blind, multicenter, flexible dose (5 mg or 10 mg twice daily based on tolerability) clinical trial with a randomized withdrawal design. A total of 700 patients entered open-label treatment with SAPHRIS for a period of 26 weeks. Of these, a total of 386 patients who met pre-specified criteria for continued stability (mean length of stabilization was 22 weeks) were randomized to a double-blind, placebo-controlled, randomized withdrawal phase. SAPHRIS was statistically superior to placebo in time to relapse or impending relapse defined as increase in PANSS ≥20% from baseline and a Clinical Global Impression–Severity of Illness (CGI-S) score ≥4 (at least 2 days within 1 week) or PANSS score ≥5 on "hostility" or "uncooperativeness" items and CGI-S score >4 (>2 days within a week), or PANSS score ≥5 on any two of the following items: "unusual thought content," "conceptual disorganization," or "hallucinatory behavior" items, and CGI-S score ≥4 (≥2 days within 1 week) or investigator judgment of worsening symptoms or increased risk of violence to self (including suicide) or other persons. The Kaplan-Meier curves of the time to relapse or impending relapse during the double-blind, placebo-controlled, randomized withdrawal phase of this trial for SAPHRIS and placebo are shown in Figure 1.


16 How Supplied/Storage And Handling



SAPHRIS (asenapine) sublingual tablets are supplied as:


17.1 Tablet Administration



[see Drug Interactions (7) and Clinical Pharmacology (12.3)].




Patients and caregivers should be advised that elderly patients with dementia-related psychoses treated with atypical antipsychotic drugs are at increased risk of death compared with placebo. SAPHRIS is not approved for elderly patients with dementia-related psychosis [see Warnings and Precautions (5.1)].


17.3 Neuroleptic Malignant Syndrome



Patients and caregivers should be counseled that a potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with administration of antipsychotic drugs. Signs and symptoms of NMS include hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia) [see Warnings and Precautions (5.3)].


17.4 Hyperglycemia And Diabetes Mellitus



Patients should be aware of the symptoms of hyperglycemia (high blood sugar) and diabetes mellitus. Patients who are diagnosed with diabetes, those with risk factors for diabetes, or those that develop these symptoms during treatment should have their blood glucose monitored at the beginning of and periodically during treatment [see Warnings and Precautions (5.5)].


17.5 Weight Gain



Patients should be advised that they may experience weight gain. Patients should have their weight monitored regularly [see Warnings and Precautions (5.6)].


17.6 Orthostatic Hypotension



Patients should be advised of the risk of orthostatic hypotension (symptoms include feeling dizzy or lightheaded upon standing) especially early in treatment, and also at times of re-initiating treatment or increases in dose [see Warnings and Precautions (5.7)].


17.7 Leukopenia/Neutropenia



Patients with a pre-existing low WBC or a history of drug induced leukopenia/neutropenia should be advised that they should have their CBC monitored while taking SAPHRIS [see Warnings and Precautions (5.8)].


17.8 Interference With Cognitive And Motor Performance



Patients should be cautioned about performing activities requiring mental alertness, such as operating hazardous machinery or operating a motor vehicle, until they are reasonably certain that SAPHRIS therapy does not affect them adversely [see Warnings and Precautions (5.12)].


17.9 Heat Exposure And Dehydration



Patients should be advised regarding appropriate care in avoiding overheating and dehydration [see Warnings and Precautions (5.13)].


17.10 Concomitant Medication And Alcohol



Patients should be advised to inform their physicians if they are taking, or plan to take, any prescription or over-the-counter medications since there is a potential for interactions. Patients should be advised to avoid alcohol while taking SAPHRIS [see Drug Interactions (7)].


17.11 Pregnancy And Nursing



Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy with SAPHRIS. Patients should be advised not to breast feed if they are taking SAPHRIS [see Use in Special Populations (8.1, 8.3)].


Package Label.Principal Display Panel



SAPHRIS PACKAGE LABEL - 10mg/60 tablet carton     

Rx only





* Please review the disclaimer below.