NDC 25021-318 Adenosine
Injection Intravenous

Product Information

What is NDC 25021-318?

The NDC code 25021-318 is assigned by the FDA to the product Adenosine which is a human prescription drug product labeled by Sagent Pharmaceuticals. The product's dosage form is injection and is administered via intravenous form. The product is distributed in 2 packages with assigned NDC codes 25021-318-02 10 vial in 1 carton / 2 ml in 1 vial, 25021-318-04 10 vial in 1 carton / 4 ml in 1 vial. This page includes all the important details about this product, including active and inactive ingredients, pharmagologic classes, product uses and characteristics, UNII information, RxNorm crosswalk and the complete product label.

NDC Product Code25021-318
Proprietary Name What is the Proprietary Name?
The proprietary name also known as the trade name is the name of the product chosen by the medication labeler for marketing purposes.
Adenosine
Non-Proprietary Name What is the Non-Proprietary Name?
The non-proprietary name is sometimes called the generic name. The generic name usually includes the active ingredient(s) of the product.
Adenosine
Product Type What kind of product is this?
Indicates the type of product, such as Human Prescription Drug or Human Over the Counter Drug. This data element matches the “Document Type” field of the Structured Product Listing.
Human Prescription Drug
Dosage FormInjection - A sterile preparation intended for parenteral use; five distinct classes of injections exist as defined by the USP.
Administration Route(s) What are the Administration Route(s)?
The translation of the route code submitted by the firm, indicating route of administration.
  • Intravenous - Administration within or into a vein or veins.
Product Labeler Information What is the Labeler Name?
Name of Company corresponding to the labeler code segment of the Product NDC.
Sagent Pharmaceuticals
Labeler Code25021
FDA Application Number What is the FDA Application Number?
This corresponds to the NDA, ANDA, or BLA number reported by the labeler for products which have the corresponding Marketing Category designated. If the designated Marketing Category is OTC Monograph Final or OTC Monograph Not Final, then the Application number will be the CFR citation corresponding to the appropriate Monograph (e.g. “part 341”). For unapproved drugs, this field will be null.
ANDA206778
Marketing Category What is the Marketing Category?
Product types are broken down into several potential Marketing Categories, such as NDA/ANDA/BLA, OTC Monograph, or Unapproved Drug. One and only one Marketing Category may be chosen for a product, not all marketing categories are available to all product types. Currently, only final marketed product categories are included. The complete list of codes and translations can be found at www.fda.gov/edrls under Structured Product Labeling Resources.
ANDA - A product marketed under an approved Abbreviated New Drug Application.
Start Marketing Date What is the Start Marketing Date?
This is the date that the labeler indicates was the start of its marketing of the drug product.
03-15-2023
Listing Expiration Date What is the Listing Expiration Date?
This is the date when the listing record will expire if not updated or certified by the product labeler.
12-31-2024
Exclude Flag What is the NDC Exclude Flag?
This field indicates whether the product has been removed/excluded from the NDC Directory for failure to respond to FDA"s requests for correction to deficient or non-compliant submissions ("Y"), or because the listing certification is expired ("E"), or because the listing data was inactivated by FDA ("I"). Values = "Y", "N", "E", or "I".
N
NDC Code Structure

What are the uses for Adenosine?


Product Packages

NDC Code 25021-318-02

Package Description: 10 VIAL in 1 CARTON / 2 mL in 1 VIAL

NDC Code 25021-318-04

Package Description: 10 VIAL in 1 CARTON / 4 mL in 1 VIAL

Product Details

What are Adenosine Active Ingredients?

An active ingredient is the substance responsible for the medicinal effects of a product specified by the substance's molecular structure or if the molecular structure is not known, defined by an unambiguous definition that identifies the substance. Each active ingredient name is the preferred term of the UNII code submitted.
  • ADENOSINE 3 mg/mL - A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter.

Adenosine Active Ingredients UNII Codes

Adenosine Inactive Ingredients UNII Codes

The inactive ingredients are all the component of a medicinal product OTHER than the active ingredient(s). The acronym "UNII" stands for “Unique Ingredient Identifier” and is used to identify each inactive ingredient present in a product.

Pharmacologic Class(es)

A pharmacologic class is a group of drugs that share the same scientifically documented properties. The following is a list of the reported pharmacologic class(es) corresponding to the active ingredients of this product.

* Please review the disclaimer below.

Adenosine Product Label

FDA filings in the form of structured product labels are documents that include all published material associated whith this product. Product label information includes data like indications and usage generic names, contraindications, active ingredients, strength dosage, routes of administration, appearance, usage, warnings, inactive ingredients, etc.

Product Label Table of Contents



Other



SAGENT®
Rx only

Post Marketing Experience (see WARNINGS)

The following adverse events have been reported from marketing experience with adenosine injection. Because these events are reported voluntarily from a population of uncertain size, are associated with concomitant diseases and multiple drug therapies and surgical procedures, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Decisions to include these events in labeling are typically based on one or more of the following factors: (1) seriousness of the event, (2) frequency of the reporting, (3) strength of causal connection to the drug, or a combination of these factors.

Cardiovascular

Prolonged asystole, ventricular tachycardia, ventricular fibrillation, transient increase in blood pressure, bradycardia, atrial fibrillation, and Torsade de Pointes

Respiratory

Bronchospasm

Central Nervous System

Seizure activity, including tonic clonic (grand mal) seizures, and loss of consciousness.

To report SUSPECTED ADVERSE REACTIONS, contact Sagent Pharmaceuticals, Inc. at 1-866-625-1618 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.


Description



Adenosine is an endogenous nucleoside occurring in all cells of the body. It is chemically 6-amino-9-β-D-ribofuranosyl-9-H-purine and has the following structural formula:

Adenosine is a white crystalline powder. It is soluble in water and practically insoluble in alcohol. Solubility increases by warming and lowering the pH. Adenosine is not chemically related to other antiarrhythmic drugs. Adenosine Injection is a sterile, nonpyrogenic solution for rapid bolus intravenous injection. Each mL contains 3 mg adenosine and 9 mg sodium chloride in Water for Injection. The pH of the solution is between 4.5 and 7.5.


Mechanism Of Action



Adenosine Injection slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore normal sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT), including PSVT associated with Wolff-Parkinson-White Syndrome.

Adenosine Injection is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenosine Injection is not blocked by atropine.


Hemodynamics



The intravenous bolus dose of 6 or 12 mg adenosine injection usually has no systemic hemodynamic effects. When larger doses are given by infusion, adenosine decreases blood pressure by decreasing peripheral resistance.


Pharmacokinetics



Intravenously administered adenosine is rapidly cleared from the circulation via cellular uptake, primarily by erythrocytes and vascular endothelial cells. This process involves a specific transmembrane nucleoside carrier system that is reversible, nonconcentrative, and bidirectionally symmetrical. Intracellular adenosine is rapidly metabolized either via phosphorylation to adenosine monophosphate by adenosine kinase, or via deamination to inosine by adenosine deaminase in the cytosol. Since adenosine kinase has a lower Km and Vmax than adenosine deaminase, deamination plays a significant role only when cytosolic adenosine saturates the phosphorylation pathway. Inosine formed by deamination of adenosine can leave the cell intact or can be degraded to hypoxanthine, xanthine, and ultimately uric acid. Adenosine monophosphate formed by phosphorylation of adenosine is incorporated into the high-energy phosphate pool. While extracellular adenosine is primarily cleared by cellular uptake with a half-life of less than 10 seconds in whole blood, excessive amounts may be deaminated by an ecto-form of adenosine deaminase. As adenosine injection requires no hepatic or renal function for its activation or inactivation, hepatic and renal failure would not be expected to alter its effectiveness or tolerability.


Clinical Trial Results



In controlled studies in the United States, bolus doses of 3, 6, 9, and 12 mg were studied. A cumulative 60% of patients with paroxysmal supraventricular tachycardia had converted to normal sinus rhythm within one minute after an intravenous bolus dose of 6 mg adenosine injection (some converted on 3 mg and failures were given 6 mg), and a cumulative 92% converted after a bolus dose of 12 mg. Seven to sixteen percent of patients converted after 1 to 4 placebo bolus injections. Similar responses were seen in a variety of patient subsets, including those using or not using digoxin, those with Wolff-Parkinson-White Syndrome, males, females, blacks, Caucasians, and Hispanics.

Adenosine is not effective in converting rhythms other than PSVT, such as atrial flutter, atrial fibrillation, or ventricular tachycardia, to normal sinus rhythm.


Indications And Usage



Intravenous adenosine injection is indicated for the following.

Conversion to sinus rhythm of paroxysmal supraventricular tachycardia (PSVT), including that associated with accessory bypass tracts (Wolff-Parkinson-White Syndrome). When clinically advisable, appropriate vagal maneuvers (e.g., Valsalva maneuver), should be attempted prior to adenosine injection administration.

It is important to be sure the adenosine injection solution actually reaches the systemic circulation (see DOSAGE AND ADMINISTRATION).

Adenosine Injection does not convert atrial flutter, atrial fibrillation, or ventricular tachycardia to normal sinus rhythm. In the presence of atrial flutter or atrial fibrillation, a transient modest slowing of ventricular response may occur immediately following adenosine injection administration.


Contraindications



Intravenous adenosine injection is contraindicated in:

  • Second- or third-degree A-V block (except in patients with a functioning artificial pacemaker).
  • Sinus node disease, such as sick sinus syndrome or symptomatic bradycardia (except in patients with a functioning artificial pacemaker).
  • Known hypersensitivity to adenosine.

Heart Block



Adenosine Injection exerts its effect by decreasing conduction through the A-V node and may produce a short lasting first-, second- or third-degree heart block. Appropriate therapy should be instituted as needed. Patients who develop high-level block on one dose of adenosine injection should not be given additional doses. Because of the very short half-life of adenosine, these effects are generally self-limiting. Appropriate resuscitative measures should be available.

Transient or prolonged episodes of asystole have been reported with fatal outcomes in some cases. Rarely, ventricular fibrillation has been reported following adenosine injection administration, including both resuscitated and fatal events. In most instances, these cases were associated with the concomitant use of digoxin and, less frequently with digoxin and verapamil. Although no causal relationship or drug-drug interaction has been established, adenosine injection should be used with caution in patients receiving digoxin or digoxin and verapamil in combination.


Arrhythmias At Time Of Conversion



At the time of conversion to normal sinus rhythm, a variety of new rhythms may appear on the electrocardiogram. They generally last only a few seconds without intervention, and may take the form of premature ventricular contractions, atrial premature contractions, atrial fibrillation, sinus bradycardia, sinus tachycardia, skipped beats, and varying degrees of A-V nodal block. Such findings were seen in 55% of patients.


Bronchoconstriction



Adenosine Injection is a respiratory stimulant (probably through activation of carotid body chemoreceptors) and intravenous administration in man has been shown to increase minute ventilation (Ve) and reduce arterial PCO2 causing respiratory alkalosis.

Adenosine administered by inhalation has been reported to cause bronchoconstriction in asthmatic patients, presumably due to mast cell degranulation and histamine release. These effects have not been observed in normal subjects. Adenosine Injection has been administered to a limited number of patients with asthma and mild to moderate exacerbation of their symptoms has been reported. Respiratory compromise has occurred during adenosine infusion in patients with obstructive pulmonary disease. Adenosine Injection should be used with caution in patients with obstructive lung disease not associated with bronchoconstriction (e.g., emphysema, bronchitis, etc.) and should be avoided in patients with bronchoconstriction or bronchospasm (e.g., asthma). Adenosine Injection should be discontinued in any patient who develops severe respiratory difficulties.


Drug Interactions



Intravenous adenosine injection has been effectively administered in the presence of other cardioactive drugs, such as quinidine, beta-adrenergic blocking agents, calcium channel blocking agents, and angiotensin converting enzyme inhibitors, without any change in the adverse reaction profile. Digoxin and verapamil use may be rarely associated with ventricular fibrillation when combined with adenosine injection (see WARNINGS). Because of the potential for additive or synergistic depressant effects on the SA and AV nodes, however, adenosine injection should be used with caution in the presence of these agents. The use of adenosine injection in patients receiving digitalis may be rarely associated with ventricular fibrillation (see WARNINGS).

The effects of adenosine are antagonized by methylxanthines such as caffeine and theophylline. In the presence of these methylxanthines, larger doses of adenosine may be required or adenosine may not be effective. Adenosine effects are potentiated by dipyridamole. Thus, smaller doses of adenosine may be effective in the presence of dipyridamole. Carbamazepine has been reported to increase the degree of heart block produced by other agents. As the primary effect of adenosine is to decrease conduction through the A-V node, higher degrees of heart block may be produced in the presence of carbamazepine.


Carcinogenesis, Mutagenesis, Impairment Of Fertility



Studies in animals have not been performed to evaluate the carcinogenic potential of adenosine injection. Adenosine was negative for genotoxic potential in the Salmonella (Ames Test) and Mammalian Microsome Assay.

Adenosine, however, like other nucleosides at millimolar concentrations present for several doubling times of cells in culture, is known to produce a variety of chromosomal alterations. Fertility studies in animals have not been conducted with adenosine.


Teratogenic Effects



Teratogenic Effects: Pregnancy Category C:

Animal reproduction studies have not been conducted with adenosine; nor have studies been performed in pregnant women. As adenosine is a naturally occurring material, widely dispersed throughout the body, no fetal effects would be anticipated. However, since it is not known whether adenosine injection can cause fetal harm when administered to pregnant women, adenosine injection should be used during pregnancy only if clearly needed.


Pediatric Use



No controlled studies have been conducted in pediatric patients to establish the safety and efficacy of adenosine injection for the conversion of paroxysmal supraventricular tachycardia (PSVT). However, intravenous adenosine has been used for the treatment of PSVT in neonates, infants, children and adolescents (see DOSAGE AND ADMINISTRATION).


Geriatric Use



Clinical studies of adenosine injection did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between elderly and younger patients. In general, adenosine injection in geriatric patients should be used with caution since this population may have a diminished cardiac function, nodal dysfunction, concomitant diseases or drug therapy that may alter hemodynamic function and produce severe bradycardia or AV block.


Adverse Reactions



The following reactions were reported with intravenous adenosine injection used in controlled U.S. clinical trials. The placebo group had a less than 1% rate of all of these reactions.

Cardiovascular

Facial flushing (18%), headache (2%), sweating, palpitations, chest pain, hypotension (less than 1%).

Respiratory

Shortness of breath/dyspnea (12%), chest pressure (7%), hyperventilation, head pressure (less than 1%).

Central Nervous System

Lightheadedness (2%), dizziness, tingling in arms, numbness (1%), apprehension, blurred vision, burning sensation, heaviness in arms, neck and back pain (less than 1%).

Gastrointestinal

Nausea (3%), metallic taste, tightness in throat, pressure in groin (less than 1%).


Overdosage



The half-life of adenosine injection is less than 10 seconds. Thus, adverse effects are generally rapidly self-limiting. Treatment of any prolonged adverse effects should be individualized and be directed toward the specific effect. Methylxanthines, such as caffeine and theophylline, are competitive antagonists of adenosine.


Dosage And Administration



For rapid bolus intravenous use only.

Adenosine Injection, USP should be given as a rapid bolus by the peripheral intravenous route. To be certain the solution reaches the systemic circulation, it should be administered either directly into a vein or, if given into an IV line, it should be given as close to the patient as possible and followed by a rapid saline flush.


Adult Patients



The dose recommendation is based on clinical studies with peripheral venous bolus dosing. Central venous (CVP or other) administration of adenosine injection has not been systematically studied.

The recommended intravenous doses for adults are as follows:

Initial dose: 6 mg given as a rapid intravenous bolus (administered over a 1 to 2 second period).

Repeat administration: If the first dose does not result in elimination of the supraventricular tachycardia within 1 to 2 minutes, 12 mg should be given as a rapid intravenous bolus. This 12 mg dose may be repeated a second time if required.


Pediatric Patients



The dosages used in neonates, infants, children and adolescents were equivalent to those administered to adults on a weight basis.

Pediatric Patients with a Body Weight < 50 kg:

Initial dose: Give 0.05 to 0.1 mg/kg as a rapid IV bolus given either centrally or peripherally. A saline flush should follow.

Repeat administration: If conversion of PSVT does not occur within 1-2 minutes, additional bolus injections of adenosine can be administered at incrementally higher doses, increasing the amount given by 0.05 to 0.1 mg/kg. Follow each bolus with a saline flush. This process should continue until sinus rhythm is established or a maximum single dose of 0.3 mg/kg is used.

Pediatric Patients with a Body Weight ≥ 50 kg: Administer the adult dose.

Doses greater than 12 mg are not recommended for adult and pediatric patients.

NOTE: Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration.


How Supplied



Adenosine Injection, USP is supplied as a sterile non-pyrogenic solution in normal saline.

NDCAdenosine Injection, USP (3 mg per mL)Package Factor
25021-318-02 6 mg per 2 mL Single-Dose Vial 10 vials per carton
25021-318-04 12 mg per 4 mL Single-Dose Vial 10 vials per carton

Storage Conditions



Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.]

DO NOT REFRIGERATE as crystallization may occur. If crystallization has occurred, dissolve crystals by warming to room temperature. The solution must be clear at the time of use.

Discard unused portion.

Sterile, Nonpyrogenic, Preservative-free.
The container closure is not made with natural rubber latex.


Reference



  • Paul T, Pfammatter. J-P. Adenosine: an effective and safe antiarrhythmic drug in pediatrics. Pediatric Cardiology 1997; 18:118-126
  • SAGENT®
    Mfd. for SAGENT Pharmaceuticals
    Schaumburg, IL 60195 (USA)
    Made in India
    ©2023 Sagent Pharmaceuticals, Inc.

    January 2023

    SAGENT Pharmaceuticals ®


Package Label.Principal Display Panel



PACKAGE LABEL – PRINCIPAL DISPLAY PANEL – Vial Label

NDC 25021-318-20

Rx only

Adenosine Injection, USP

6 mg per 2 mL

(3 mg per mL)

For Rapid Bolus Intravenous Use


* Please review the disclaimer below.