NDC 63323-506 Dexamethasone Sodium Phosphate
Injection, Solution Intramuscular; Intravenous

Product Information

What is NDC 63323-506?

The NDC code 63323-506 is assigned by the FDA to the product Dexamethasone Sodium Phosphate which is a human prescription drug product labeled by Fresenius Kabi Usa, Llc. The product's dosage form is injection, solution and is administered via intramuscular; intravenous form. The product is distributed in 2 packages with assigned NDC codes 63323-506-01 25 vial in 1 tray / 1 ml in 1 vial, 63323-506-16 25 vial in 1 tray / 1 ml in 1 vial (63323-506-41). This page includes all the important details about this product, including active and inactive ingredients, pharmagologic classes, product uses and characteristics, UNII information, RxNorm crosswalk and the complete product label.

NDC Product Code63323-506
Proprietary Name What is the Proprietary Name?
The proprietary name also known as the trade name is the name of the product chosen by the medication labeler for marketing purposes.
Dexamethasone Sodium Phosphate
Non-Proprietary Name What is the Non-Proprietary Name?
The non-proprietary name is sometimes called the generic name. The generic name usually includes the active ingredient(s) of the product.
Dexamethasone Sodium Phosphate
Product Type What kind of product is this?
Indicates the type of product, such as Human Prescription Drug or Human Over the Counter Drug. This data element matches the “Document Type” field of the Structured Product Listing.
Human Prescription Drug
Dosage FormInjection, Solution - A liquid preparation containing one or more drug substances dissolved in a suitable solvent or mixture of mutually miscible solvents that is suitable for injection.
Administration Route(s) What are the Administration Route(s)?
The translation of the route code submitted by the firm, indicating route of administration.
  • Intramuscular - Administration within a muscle.
  • Intravenous - Administration within or into a vein or veins.
  • Intramuscular - Administration within a muscle.
  • Intravenous - Administration within or into a vein or veins.
Product Labeler Information What is the Labeler Name?
Name of Company corresponding to the labeler code segment of the Product NDC.
Fresenius Kabi Usa, Llc
Labeler Code63323
FDA Application Number What is the FDA Application Number?
This corresponds to the NDA, ANDA, or BLA number reported by the labeler for products which have the corresponding Marketing Category designated. If the designated Marketing Category is OTC Monograph Final or OTC Monograph Not Final, then the Application number will be the CFR citation corresponding to the appropriate Monograph (e.g. “part 341”). For unapproved drugs, this field will be null.
ANDA040491
Marketing Category What is the Marketing Category?
Product types are broken down into several potential Marketing Categories, such as NDA/ANDA/BLA, OTC Monograph, or Unapproved Drug. One and only one Marketing Category may be chosen for a product, not all marketing categories are available to all product types. Currently, only final marketed product categories are included. The complete list of codes and translations can be found at www.fda.gov/edrls under Structured Product Labeling Resources.
ANDA - A product marketed under an approved Abbreviated New Drug Application.
Start Marketing Date What is the Start Marketing Date?
This is the date that the labeler indicates was the start of its marketing of the drug product.
05-29-2003
Listing Expiration Date What is the Listing Expiration Date?
This is the date when the listing record will expire if not updated or certified by the product labeler.
12-31-2023
Exclude Flag What is the NDC Exclude Flag?
This field indicates whether the product has been removed/excluded from the NDC Directory for failure to respond to FDA"s requests for correction to deficient or non-compliant submissions ("Y"), or because the listing certification is expired ("E"), or because the listing data was inactivated by FDA ("I"). Values = "Y", "N", "E", or "I".
N
NDC Code Structure

What are the uses for Dexamethasone Sodium Phosphate?


Product Packages

NDC Code 63323-506-01

Package Description: 25 VIAL in 1 TRAY / 1 mL in 1 VIAL

NDC Code 63323-506-16

Package Description: 25 VIAL in 1 TRAY / 1 mL in 1 VIAL (63323-506-41)

Product Details

What are Dexamethasone Sodium Phosphate Active Ingredients?

An active ingredient is the substance responsible for the medicinal effects of a product specified by the substance's molecular structure or if the molecular structure is not known, defined by an unambiguous definition that identifies the substance. Each active ingredient name is the preferred term of the UNII code submitted.

NDC to RxNorm Crosswalk

What is RxNorm? RxNorm is a normalized naming system for generic and branded drugs that assigns unique concept identifier(s) known as RxCUIs to NDC products.The NDC to RxNorm Crosswalk for this produdct indicates multiple concept unique identifiers (RXCUIs) are associated with this product:

Pharmacologic Class(es)

A pharmacologic class is a group of drugs that share the same scientifically documented properties. The following is a list of the reported pharmacologic class(es) corresponding to the active ingredients of this product.

* Please review the disclaimer below.

Dexamethasone Sodium Phosphate Product Label

FDA filings in the form of structured product labels are documents that include all published material associated whith this product. Product label information includes data like indications and usage generic names, contraindications, active ingredients, strength dosage, routes of administration, appearance, usage, warnings, inactive ingredients, etc.

Product Label Table of Contents



Description



Dexamethasone Sodium Phosphate Injection, USP, is a water-soluble inorganic ester of dexamethasone which produces a rapid response even when injected intramuscularly. 

Dexamethasone Sodium Phosphate, USP chemically is Pregna-1,4-diene-3,20-dione, 9-fluoro- 11,17-dihydroxy-16-methyl-21-(phosphonooxy)-, disodium salt, (11ß, 16α).

It occurs as a white to creamy white powder, is exceedingly hygroscopic, is soluble in water and its solutions have a pH between 7.0 and 8.5.  It has the following structural formula:

 


Each mL of Dexamethasone Sodium Phosphate Injection, USP (Preservative Free) contains dexamethasone sodium phosphate, USP equivalent to 10 mg dexamethasone phosphate; 24.75 mg sodium citrate, dihydrate; and Water for Injection, q.s. pH adjusted with citric acid or sodium hydroxide, if necessary.  pH: 7.0 to 8.5.

Each mL Dexamethasone Sodium Phosphate Injection, USP (Preserved) contains dexamethasone sodium phosphate, USP equivalent to 10 mg dexamethasone phosphate; 13.5 mg sodium citrate, dihydrate; 10 mg benzyl alcohol; and Water for Injection, q.s. pH adjusted with citric acid or sodium hydroxide, if necessary.  pH: 7.0 to 8.5.

Bupivacaine hydrochloride is 2-Piperidinecarboxamide, 1-butyl-N-(2,6-dimethylphenyl)-, monohydrochloride, monohydrate, a white crystalline powder that is freely soluble in 95 percent ethanol, soluble in water, and slightly soluble in chloroform or acetone. It has the following structural formula:


Epinephrine is (-)-3,4-Dihydroxy-α-[(methylamino)methyl] benzyl alcohol. It has the following structural formula:


MARCAINE is available in sterile isotonic solutions with and without epinephrine (as bitartrate) 1:200,000 for injection via local infiltration, peripheral nerve block, and caudal and lumbar epidural blocks. Solutions of MARCAINE may be autoclaved if they do not contain epinephrine. Solutions are clear and colorless.

Bupivacaine is related chemically and pharmacologically to the aminoacyl local anesthetics. It is a homologue of mepivacaine and is chemically related to lidocaine. All three of these anesthetics contain an amide linkage between the aromatic nucleus and the amino, or piperidine group. They differ in this respect from the procaine-type local anesthetics, which have an ester linkage.

MARCAINE — Sterile isotonic solutions containing sodium chloride. In multiple-dose vials, each mL also contains 1 mg methylparaben as antiseptic preservative. The pH of these solutions is adjusted to between 4 and 6.5 with sodium hydroxide or hydrochloric acid.

MARCAINE with epinephrine 1:200,000 (as bitartrate)—Sterile isotonic solutions containing sodium chloride. Each mL contains bupivacaine hydrochloride and 0.0091 mg epinephrine bitartrate, with 0.5 mg sodium metabisulfite, 0.001 mL monothioglycerol, and 2 mg ascorbic acid as antioxidants, 0.0017 mL 60% sodium lactate buffer, and 0.1 mg edetate calcium disodium as stabilizer. In multiple-dose vials, each mL also contains 1 mg methylparaben as antiseptic preservative. The pH of these solutions is adjusted to between 3.4 and 4.5 with sodium hydroxide or hydrochloric acid. The specific gravity of MARCAINE 0.5% with epinephrine 1:200,000 (as bitartrate) at 25°C is 1.008 and at 37°C is 1.008.


Clinical Pharmacology



Dexamethasone sodium phosphate injection has a rapid onset but short duration of action when compared with less soluble preparations.  Because of this, it is suitable for the treatment of acute disorders responsive to adrenocortical steroid therapy.

Naturally occurring glucocorticoids (hydrocortisone and cortisone), which also have salt-retaining properties, are used as replacement therapy in adrenocortical deficiency states. Their synthetic analogs, including dexamethasone, are primarily used for their potent anti-inflammatory effects in disorders of many organ systems.

Glucocorticoids cause profound and varied metabolic effects.  In addition, they modify the body’s immune responses to diverse stimuli.

At equipotent anti-inflammatory doses, dexamethasone almost completely lacks the sodium-retaining property of hydrocortisone and closely related derivatives of hydrocortisone.

Local anesthetics block the generation and the conduction of nerve impulses, presumably by increasing the threshold for electrical excitation in the nerve, by slowing the propagation of the nerve impulse, and by reducing the rate of rise of the action potential. In general, the progression of anesthesia is related to the diameter, myelination, and conduction velocity of affected nerve fibers. Clinically, the order of loss of nerve function is as follows: (1) pain, (2) temperature, (3) touch,  (4) proprioception, and (5) skeletal muscle tone.

Systemic absorption of local anesthetics produces effects on the cardiovascular and central nervous systems (CNS). At blood concentrations achieved with normal therapeutic doses, changes in cardiac conduction, excitability, refractoriness, contractility, and peripheral vascular resistance are minimal. However, toxic blood concentrations depress cardiac conduction and excitability, which may lead to atrioventricular block, ventricular arrhythmias, and cardiac arrest, sometimes resulting in fatalities. In addition, myocardial contractility is depressed and peripheral vasodilation occurs, leading to decreased cardiac output and arterial blood pressure. Recent clinical reports and animal research suggest that these cardiovascular changes are more likely to occur after unintended intravascular injection of bupivacaine. Therefore, incremental dosing is necessary.

Following systemic absorption, local anesthetics can produce central nervous system stimulation, depression, or both. Apparent central stimulation is manifested as restlessness, tremors and shivering progressing to convulsions, followed by depression and coma progressing ultimately to respiratory arrest. However, the local anesthetics have a primary depressant effect on the medulla and on higher centers. The depressed stage may occur without a prior excited state.

Pharmacokinetics: The rate of systemic absorption of local anesthetics is dependent upon the total dose and concentration of drug administered, the route of administration, the vascularity of the administration site, and the presence or absence of epinephrine in the anesthetic solution. A dilute concentration of epinephrine (1:200,000 or 5 mcg/mL) usually reduces the rate of absorption and peak plasma concentration of MARCAINE, permitting the use of moderately larger total doses and sometimes prolonging the duration of action.

The onset of action with MARCAINE is rapid and anesthesia is long lasting. The duration of anesthesia is significantly longer with MARCAINE than with any other commonly used local anesthetic. It has also been noted that there is a period of analgesia that persists after the return of sensation, during which time the need for strong analgesics is reduced.

The onset of action following dental injections is usually 2 to 10 minutes and anesthesia may last two or three times longer than lidocaine and mepivacaine for dental use, in many patients up to 7 hours. The duration of anesthetic effect is prolonged by the addition of epinephrine 1:200,000.

Local anesthetics are bound to plasma proteins in varying degrees. Generally, the lower the plasma concentration of drug the higher the percentage of drug bound to plasma proteins.

Local anesthetics appear to cross the placenta by passive diffusion. The rate and degree of diffusion is governed by (1) the degree of plasma protein binding, (2) the degree of ionization, and (3) the degree of lipid solubility. Fetal/ maternal ratios of local anesthetics appear to be inversely related to the degree of plasma protein binding, because only the free, unbound drug is available for placental transfer. MARCAINE with a high protein binding capacity (95%) has a low fetal/maternal ratio (0.2 to 0.4). The extent of placental transfer is also determined by the degree of ionization and lipid solubility of the drug. Lipid soluble, nonionized drugs readily enter the fetal blood from the maternal circulation.

Depending upon the route of administration, local anesthetics are distributed to some extent to all body tissues, with high concentrations found in highly perfused organs such as the liver, lungs, heart, and brain.

Pharmacokinetic studies on the plasma profile of MARCAINE after direct intravenous injection suggest a three-compartment open model. The first compartment is represented by the rapid intravascular distribution of the drug. The second compartment represents the equilibration of the drug throughout the highly perfused organs such as the brain, myocardium, lungs, kidneys, and liver. The third compartment represents an equilibration of the drug with poorly perfused tissues, such as muscle and fat. The elimination of drug from tissue distribution depends largely upon the ability of binding sites in the circulation to carry it to the liver where it is metabolized.

After injection of MARCAINE for caudal, epidural, or peripheral nerve block in man, peak levels of bupivacaine in the blood are reached in 30 to 45 minutes, followed by a decline to insignificant levels during the next three to six hours.

Various pharmacokinetic parameters of the local anesthetics can be significantly altered by the presence of hepatic or renal disease, addition of epinephrine, factors affecting urinary pH, renal blood flow, the route of drug administration, and the age of the patient. The half-life of MARCAINE in adults is 2.7 hours and in neonates 8.1 hours.

In clinical studies, elderly patients reached the maximal spread of analgesia and maximal motor blockade more rapidly than younger patients. Elderly patients also exhibited higher peak plasma concentrations following administration of this product. The total plasma clearance was decreased in these patients.

Amide-type local anesthetics such as MARCAINE are metabolized primarily in the liver via conjugation with glucuronic acid. Patients with hepatic disease, especially those with severe hepatic disease, may be more susceptible to the potential toxicities of the amide-type local anesthetics. Pipecoloxylidine is the major metabolite of MARCAINE.

The kidney is the main excretory organ for most local anesthetics and their metabolites. Urinary excretion is affected by urinary perfusion and factors affecting urinary pH. Only 6% of bupivacaine is excreted unchanged in the urine.

When administered in recommended doses and concentrations, MARCAINE does not ordinarily produce irritation or tissue damage and does not cause methemoglobinemia.


Indications And Usage



By intravenous or intramuscular injection when oral therapy is not feasible:

1. Endocrine Disorders

     Primary or secondary adrenocortical insufficiency (hydrocortisone or cortisone is the drug of choice; synthetic analogs may be used in conjunction with mineralocorticoids

     where applicable; in infancy, mineralocorticoid supplementation is of particular importance).

     Acute adrenocortical insufficiency (hydrocortisone or cortisone is the drug of choice; mineralocorticoid supplementation may be necessary, particularly when synthetic analogs

     are used).

     Preoperatively, and in the event of serious trauma or illness, in patients with known adrenal insufficiency or when adrenocortical reserve is doubtful.

     Shock unresponsive to conventional therapy if adrenocortical insufficiency exists or is suspected.

     Congenital adrenal hyperplasia

     Nonsuppurative thyroiditis

     Hypercalcemia associated with cancer

2. Rheumatic Disorders

     As adjunctive therapy for short-term administration (to tide the patient over an acute episode or exacerbation) in:

     Post-traumatic osteoarthritis

     Synovitis of osteoarthritis

     Rheumatoid arthritis, including juvenile rheumatoid arthritis (selected cases may require low-dose maintenance therapy).

     Acute and subacute bursitis

     Epicondylitis

     Acute nonspecific tenosynovitis

     Acute gouty arthritis

     Psoriatic arthritis

     Ankylosing spondylitis

3. Collagen Diseases

     During an exacerbation or as maintenance therapy in selected cases of:

     Systemic lupus erythematosus

     Acute rheumatic carditis

4. Dermatologic Diseases

     Pemphigus

     Severe erythema multiforme (Stevens-Johnson syndrome)

     Exfoliative dermatitis

     Bullous dermatitis herpetiformis

     Severe seborrheic dermatitis

     Severe psoriasis

     Mycosis fungoides

5. Allergic States

     Control of severe or incapacitating allergic conditions intractable to adequate trials of conventional treatment in:

     Bronchial asthma

     Contact dermatitis

     Atopic dermatitis

     Serum sickness

     Seasonal or perennial allergic rhinitis

     Drug hypersensitivity reactions

     Urticarial transfusion reactions

     Acute noninfectious laryngeal edema (epinephrine is the drug of first choice).

6. Ophthalmic Diseases

     Severe acute and chronic allergic and inflammatory processes involving the eye, such as:

     Herpes zoster ophthalmicus

     Iritis, iridocyclitis

     Chorioretinitis

     Diffuse posterior uveitis and choroiditis

     Optic neuritis

     Sympathetic ophthalmia

     Anterior segment inflammation

     Allergic conjunctivitis

     Keratitis

     Allergic corneal marginal ulcers

7. Gastrointestinal Diseases

     To tide the patient over a critical period of the disease in:

     Ulcerative colitis (systemic therapy)

     Regional enteritis (systemic therapy)

8. Respiratory Diseases

     Symptomatic sarcoidosis

     Berylliosis

     Fulminating or disseminated pulmonary tuberculosis when used concurrently with appropriate antituberculous chemotherapy.

     Loeffler’s syndrome not manageable by other means.

     Aspiration pneumonitis

9. Hematologic Disorders

     Acquired (autoimmune) hemolytic anemia.

     Idiopathic thrombocytopenic purpura in adults

     (IV only; IM administration is contraindicated).

     Secondary thrombocytopenia in adults

     Erythroblastopenia (RBC anemia)

     Congenital (erythroid) hypoplastic anemia

10. Neoplastic Diseases

     For palliative management of:

     Leukemias and lymphomas in adults

     Acute leukemia of childhood

11. Edematous States

     To induce diuresis or remission of proteinuria in the nephrotic syndrome, without uremia, of the idiopathic type or that due to lupus erythematosus.

12. Miscellaneous

     Tuberculous meningitis with subarachnoid block or impending block when used concurrently with appropriate antituberculous chemotherapy.

     Trichinosis with neurologic or myocardial involvement.

13. Diagnostic testing of adrenocortical hyperfunction.

14. Cerebral Edema associated with primary or metastatic brain tumor, craniotomy, or head injury.  Use in cerebral edema is not a substitute for careful neurosurgical evaluation

     and definitive management such as neurosurgery or other specific therapy.  

MARCAINE is indicated for the production of local or regional anesthesia or analgesia for surgery, dental and oral surgery procedures, diagnostic and therapeutic procedures, and for obstetrical procedures. Only the 0.25% and 0.5% concentrations are indicated for obstetrical anesthesia. (See WARNINGS.)

Experience with nonobstetrical surgical procedures in pregnant patients is not sufficient to recommend use of 0.75% concentration of MARCAINE in these patients.

MARCAINE is not recommended for intravenous regional anesthesia (Bier Block). See WARNINGS.

The routes of administration and indicated MARCAINE concentrations are:

∙ local infiltration                                                                                 0.25%

∙ peripheral nerve block                                                                      0.25% and 0.5%

∙ retrobulbar block                                                                              0.75%

∙ sympathetic block                                                                             0.25%

∙ lumbar epidural                                                                                 0.25%, 0.5%, and 0.75%

                                                                                                          (0.75% not for obstetrical anesthesia)

∙ caudal                                                                                               0.25% and 0.5%

∙ epidural test dose                                                                              0.5% with epinephrine 1:200,000

∙ dental blocks                                                                                     0.5% with epinephrine 1:200,000

(See DOSAGE AND ADMINISTRATION for additional information.)

Standard textbooks should be consulted to determine the accepted procedures and techniques for the administration of MARCAINE.


Contraindications



Systemic fungal infections (see WARNINGS regarding amphotericin B).

Hypersensitivity to any component of this product (see WARNINGS).

MARCAINE is contraindicated in obstetrical paracervical block anesthesia. Its use in this technique has resulted in fetal bradycardia and death.

MARCAINE is contraindicated in patients with a known hypersensitivity to it or to any local anesthetic agent of the amide-type or to other components of MARCAINE solutions.


Warnings



Because rare instances of anaphylactoid reactions have occurred in patients receiving parenteral corticosteroid therapy, appropriate precautionary measures should be taken prior to administration, especially when the patient has a history of allergy to any drug.  Anaphylactoid and hypersensitivity reactions have been reported for dexamethasone sodium phosphate injection (see ADVERSE REACTIONS).

Corticosteroids may exacerbate systemic fungal infections and, therefore, should not be used in the presence of such infections unless they are needed to control drug reactions due to amphotericin B.  Moreover, there have been cases reported in which concomitant use of amphotericin B and hydrocortisone was followed by cardiac enlargement and congestive failure.

In patients on corticosteroid therapy subjected to any unusual stress, increased dosage of rapidly acting corticosteroids before, during, and after the stressful situation is indicated.

Drug-induced secondary adrenocortical insufficiency may result from too rapid withdrawal of corticosteroids and may be minimized by gradual reduction of dosage. This type of relative insufficiency may persist for months after discontinuation of therapy; therefore, in any situation of stress occurring during that period, hormone therapy should be reinstituted.  If the patient is receiving steroids already, dosage may have to be increased.  Since mineralocorticoid secretion may be impaired, salt and/or a mineralocorticoid should be administered concurrently.

Corticosteroids may mask some signs of infection, and new infections may appear during their use.  There may be decreased resistance and inability to localize infection when corticosteroids are used.  Moreover, corticosteroids may affect the nitroblue-tetrazolium test for bacterial infection and produce false negative results.

In cerebral malaria, a double-blind trial has shown that the use of corticosteroids is associated with prolongation of coma and a higher incidence of pneumonia and gastrointestinal bleeding.

Corticosteroids may activate latent amebiasis.  Therefore, it is recommended that latent or active amebiasis be ruled out before initiating corticosteroid therapy in any patient who has spent time in the tropics or in any patient with unexplained diarrhea.

Prolonged use of corticosteroids may produce posterior subcapsular cataracts, glaucoma with possible damage to the optic nerves, and may enhance the establishment of secondary ocular infections due to fungi or viruses.

Average and large doses of cortisone or hydrocortisone can cause elevation of blood pressure, salt and water retention, and increased excretion of potassium.  These effects are less likely to occur with the synthetic derivatives except when used in large doses.  Dietary salt restriction and potassium supplementation may be necessary.  All corticosteroids increase calcium excretion.

Administration of live virus vaccines, including smallpox, is contraindicated in individuals receiving immunosuppressive doses of corticosteroids.  If inactivated viral or bacterial vaccines are administered to individuals receiving immunosuppressive doses of corticosteroids, the expected serum antibody response may not be obtained.  However, immunization procedures may be undertaken in patients who are receiving corticosteroids as replacement therapy, e.g., for Addison’s disease.

Patients who are on drugs which suppress the immune system are more susceptible to infections than healthy individuals.  Chickenpox and measles, for example, can have a more serious or even fatal course in non-immune children or adults on corticosteroids.  In such children or adults who have not had these diseases, particular care should be taken to avoid exposure.  The risk of developing a disseminated infection varies among individuals and can be related to the dose, route and duration of corticosteroid administration as well as to the underlying disease.  If exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated.  If chickenpox develops, treatment with antiviral agents may be considered.  If exposed to measles, prophylaxis with immune globulin (IG) may be indicated. (See the respective package inserts for VZIG and IG for complete prescribing information). 

The use of dexamethasone sodium phosphate injection in active tuberculosis should be restricted to those cases of fulminating or disseminated tuberculosis in which the corticosteroid is used for the management of the disease in conjunction with an appropriate antituberculous regimen.

If corticosteroids are indicated in patients with latent tuberculosis or tuberculin reactivity, close observation is necessary as reactivation of the disease may occur.  During prolonged corticosteroid therapy, these patients should receive chemoprophylaxis.

Literature reports suggest an apparent association between use of corticosteroids and left ventricular free wall rupture after a recent myocardial infarction; therefore, therapy with corticosteroids should be used with great caution in these patients.

THE 0.75% CONCENTRATION OF MARCAINE IS NOT RECOMMENDED FOR OBSTETRICAL ANESTHESIA. THERE HAVE BEEN REPORTS OF CARDIAC ARREST WITH DIFFICULT RESUSCITATION OR DEATH DURING USE OF MARCAINE FOR EPIDURAL ANESTHESIA IN OBSTETRICAL PATIENTS. IN MOST CASES, THIS HAS FOLLOWED USE OF THE 0.75% CONCENTRATION. RESUSCITATION HAS BEEN DIFFICULT OR IMPOSSIBLE DESPITE APPARENTLY ADEQUATE PREPARATION AND APPROPRIATE MANAGEMENT. CARDIAC ARREST HAS OCCURRED AFTER CONVULSIONS RESULTING FROM SYSTEMIC TOXICITY, PRESUMABLY FOLLOWING UNINTENTIONAL INTRAVASCULAR INJECTION. THE 0.75% CONCENTRATION SHOULD BE RESERVED FOR SURGICAL PROCEDURES WHERE A HIGH DEGREE OF MUSCLE RELAXATION AND PROLONGED EFFECT ARE NECESSARY.

LOCAL ANESTHETICS SHOULD ONLY BE EMPLOYED BY CLINICIANS WHO ARE WELL VERSED IN DIAGNOSIS AND MANAGEMENT OF DOSE-RELATED TOXICITY AND OTHER ACUTE EMERGENCIES WHICH MIGHT ARISE FROM THE BLOCK TO BE EMPLOYED, AND THEN ONLY AFTER INSURING THE IMMEDIATE AVAILABILITY OF OXYGEN, OTHER RESUSCITATIVE DRUGS, CARDIOPULMONARY RESUSCITATIVE EQUIPMENT, AND THE PERSONNEL RESOURCES NEEDED FOR PROPER MANAGEMENT OF TOXIC REACTIONS AND RELATED EMERGENCIES. (See also ADVERSE REACTIONS, PRECAUTIONS, and OVERDOSAGE.) DELAY IN PROPER MANAGEMENT OF DOSE-RELATED TOXICITY, UNDERVENTILATION FROM ANY CAUSE, AND/OR ALTERED SENSITIVITY MAY LEAD TO THE DEVELOPMENT OF ACIDOSIS, CARDIAC ARREST AND, POSSIBLY, DEATH.

Local anesthetic solutions containing antimicrobial preservatives, i.e., those supplied in multiple-dose vials, should not be used for epidural or caudal anesthesia because safety has not been established with regard to intrathecal injection, either intentionally or unintentionally, of such preservatives.

Intra-articular infusions of local anesthetics following arthroscopic and other surgical procedures is an unapproved use, and there have been post-marketing reports of chondrolysis in patients receiving such infusions. The majority of reported cases of chondrolysis have involved the shoulder joint; cases of gleno-humeral chondrolysis have been described in pediatric and adult patients following intra-articular infusions of local anesthetics with and without epinephrine for periods of 48 to 72 hours. There is insufficient information to determine whether shorter infusion periods are not associated with these findings. The time of onset of symptoms, such as joint pain, stiffness and loss of motion can be variable, but may begin as early as the 2nd month after surgery. Currently, there is no effective treatment for chondrolysis; patients who experienced chondrolysis have required additional diagnostic and therapeutic procedures and some required arthroplasty or shoulder replacement.

It is essential that aspiration for blood or cerebrospinal fluid (where applicable) be done prior to injecting any local anesthetic, both the original dose and all subsequent doses, to avoid intravascular or subarachnoid injection. However, a negative aspiration does not ensure against an intravascular or subarachnoid injection.

MARCAINE with epinephrine 1:200,000 or other vasopressors should not be used concomitantly with ergot-type oxytocic drugs, because a severe persistent hypertension may occur. Likewise, solutions of MARCAINE containing a vasoconstrictor, such as epinephrine, should be used with extreme caution in patients receiving monoamineoxidase inhibitors (MAOI) or antidepressants of the triptyline or imipramine types, because severe prolonged hypertension may result.

Until further experience is gained in pediatric patients younger than 12 years, administration of MARCAINE in this age group is not recommended.

Mixing or the prior or intercurrent use of any other local anesthetic with MARCAINE cannot be recommended because of insufficient data on the clinical use of such mixtures.

There have been reports of cardiac arrest and death during the use of MARCAINE for intravenous regional anesthesia (Bier Block). Information on safe dosages and techniques of administration of MARCAINE in this procedure is lacking. Therefore, MARCAINE is not recommended for use in this technique.

MARCAINE with epinephrine 1:200,000 contains sodium metabisulfite, a sulfite that may cause allergic-type reactions including anaphylactic symptoms and life-threatening or less severe asthmatic episodes in certain susceptible people. The overall prevalence of sulfite sensitivity in the general population is unknown and probably low. Sulfite sensitivity is seen more frequently in asthmatic than in nonasthmatic people. Single-dose ampuls and single-dose vials of MARCAINE without epinephrine do not contain sodium metabisulfite.

For external use only

Flammable - keep away from fire or flame


Usage In Pregnancy



Since adequate human reproduction studies have not been done with corticosteroids, use of these drugs in pregnancy or in women of childbearing potential requires that the anticipated benefits be weighed against the possible hazards to the mother and embryo or fetus.  Infants born of mothers who have received substantial doses of corticosteroids during pregnancy should be carefully observed for signs of hypoadrenalism.

Corticosteroids appear in breast milk and could suppress growth, interfere with endogenous corticosteroid production, or cause other unwanted effects.  Mothers taking pharmacologic doses of corticosteroids should be advised not to nurse.


Precautions



This product, like many other steroid formulations, is sensitive to heat.  Therefore, it should not be autoclaved when it is desirable to sterilize the exterior of the vial.

Following prolonged therapy, withdrawal of corticosteroids may result in symptoms of the corticosteroid withdrawal syndrome including fever, myalgia, arthralgia, and malaise.  This may occur in patients even without evidence of adrenal insufficiency.

There is an enhanced effect of corticosteroids in patients with hypothyroidism and in those with cirrhosis. 

Corticosteroids should be used cautiously in patients with ocular herpes simplex for fear of corneal perforation.

The lowest possible dose of corticosteroid should be used to control the condition under treatment, and when reduction in dosage is possible, the reduction must be gradual.

Psychic derangements may appear when corticosteroids are used, ranging from euphoria, insomnia, mood swings, personality changes, and severe depression to frank psychotic manifestations.  Also, existing emotional instability or psychotic tendencies may be aggravated by corticosteroids.

Aspirin should be used within caution in conjunction with corticosteroids in hypoprothrombinemia.

Steroids should be used with caution in nonspecific ulcerative colitis, if there is a probability of impending perforation, abscess, or other pyogenic infection, also in diverticulitis, fresh intestinal anastomoses, active or latent peptic ulcer, renal insufficiency, hypertension, osteoporosis, and myasthenia gravis.  Signs of peritoneal irritation following gastrointestinal perforation in patients receiving large doses of corticosteroids may be minimal or absent.  Fat embolism has been reported as a possible complication of hypercortisonism.

When large doses are given, some authorities advise that antacids be administered between meals to help prevent peptic ulcer.

Steroids may increase or decrease motility and number of spermatozoa in some patients.

Phenytoin, phenobarbital, ephedrine, and rifampin may enhance the metabolic clearance of corticosteroids resulting in decreased blood levels and lessened physiologic activity, thus requiring adjustment in corticosteroid dosage.  These interactions may interfere with dexamethasone suppression tests which should be interpreted with caution during administration of these drugs.

False negative results in the dexamethasone suppression test (DST) in patients being treated with indomethacin have been reported.  Thus, results of the DST should be interpreted with caution in these patients.

The prothrombin time should be checked frequently in patients who are receiving corticosteroids and coumarin anticoagulants at the same time because of reports that corticosteroids have altered the response to these anticoagulants.  Studies have shown that the usual effect produced by adding corticosteroids is inhibition of response to coumarins, although there have been some conflicting reports of potentiation not substantiated by studies. 

When corticosteroids are administered concomitantly with potassium-depleting diuretics, patients should be observed closely for development of hypokalemia.

The slower rate of absorption by intramuscular administration should be recognized.


Information For Patients



Susceptible patients who are on immunosuppressant doses of corticosteroids should be warned to avoid exposure to chickenpox or measles.  Patients should also be advised that if they are exposed, medical advice should be sought without delay.


Pediatric Use



Growth and development of infants and children patients on prolonged corticosteroid therapy should be carefully followed.


Adverse Reactions



Fluid and electrolyte disturbances:

    Sodium retention

    Fluid retention

    Congestive heart failure in susceptible patients

    Potassium loss

    Hypokalemic alkalosis

    Hypertension

Musculoskeletal:

    Muscle weakness

    Steroid myopathy

    Loss of muscle mass

    Osteoporosis

    Vertebral compression fractures

    Aseptic necrosis of femoral and humeral heads

    Tendon rupture

    Pathologic fracture of long bones

Gastrointestinal:

    Peptic ulcer with possible subsequent perforation and hemorrhage

    Perforation of the small and large bowel; particularly in patients with inflammatory

    bowel disease

    Pancreatitis

    Abdominal distention

    Ulcerative esophagitis

Dermatologic:

    Impaired wound healing

    Thin fragile skin

    Petechiae and ecchymoses

    Erythema

    Increased sweating

    May suppress reactions to skin tests

    Burning or tingling, especially in the perineal area (after IV injection)

    Other cutaneous reactions, such as allergic dermatitis, urticaria, angioneurotic edema

Neurologic:

    Convulsions

    Increased intracranial pressure with papilledema (pseudotumor cerebri) usually after

    treatment

    Vertigo

    Headache

    Psychic disturbances

Endocrine:

    Menstrual irregularities

    Development of cushingoid state

    Suppression of growth in pediatric patients

    Secondary adrenocortical and pituitary unresponsiveness, particularly in times of

    stress, as in trauma, surgery, or illness

    Decreased carbohydrate tolerance

    Manifestations of latent diabetes mellitus

    Increased requirements for insulin or oral hypoglycemic agents in diabetics

    Hirsutism

Ophthalmic:

    Posterior subcapsular cataracts

    Increased intraocular pressure

    Glaucoma

    Exophthalmos

    Retinopathy of prematurity

Metabolic:

    Negative nitrogen balance due to protein catabolism

Cardiovascular:

    Myocardial rupture following recent myocardial infarction (see WARNINGS)

    Hypertrophic cardiomyopathy in low birth weight infants

 Other:

    Anaphylactoid or hypersensitivity reactions

    Thromboembolism

    Weight gain

    Increased appetite

    Nausea

    Malaise

    Hiccups

The following additional adverse reactions are related to parenteral corticosteroid therapy:

    Hyperpigmentation or hypopigmentation

    Subcutaneous and cutaneous atrophy

    Sterile abscess

    Charcot-like arthropathy

Reactions to MARCAINE are characteristic of those associated with other amide-type local anesthetics. A major cause of adverse reactions to this group of drugs is excessive plasma levels, which may be due to overdosage, unintentional intravascular injection, or slow metabolic degradation.

The most commonly encountered acute adverse experiences which demand immediate counter-measures are related to the central nervous system and the cardiovascular system. These adverse experiences are generally dose related and due to high plasma levels which may result from overdosage, rapid absorption from the injection site, diminished tolerance, or from unintentional intravascular injection of the local anesthetic solution. In addition to systemic dose-related toxicity, unintentional subarachnoid injection of drug during the intended performance of caudal or lumbar epidural block or nerve blocks near the vertebral column (especially in the head and neck region) may result in underventilation or apnea (“Total or High Spinal”). Also, hypotension due to loss of sympathetic tone and respiratory paralysis or underventilation due to cephalad extension of the motor level of anesthesia may occur. This may lead to secondary cardiac arrest if untreated. Patients over 65 years, particularly those with hypertension, may be at increased risk for experiencing the hypotensive effects of MARCAINE. Factors influencing plasma protein binding, such as acidosis, systemic diseases which alter protein production, or competition of other drugs for protein binding sites, may diminish individual tolerance.


Central Nervous System Reactions: These are characterized by excitation and/or depression. Restlessness, anxiety, dizziness, tinnitus, blurred vision, or tremors may occur, possibly proceeding to convulsions. However, excitement may be transient or absent, with depression being the first manifestation of an adverse reaction. This may quickly be followed by drowsiness merging into unconsciousness and respiratory arrest. Other central nervous system effects may be nausea, vomiting, chills, and constriction of the pupils.

The incidence of convulsions associated with the use of local anesthetics varies with the procedure used and the total dose administered. In a survey of studies of epidural anesthesia, overt toxicity progressing to convulsions occurred in approximately 0.1% of local anesthetic administrations.


Cardiovascular System Reactions: High doses or unintentional intravascular injection may lead to high plasma levels and related depression of the myocardium, decreased cardiac output, heartblock, hypotension, bradycardia, ventricular arrhythmias, including ventricular tachycardia and ventricular fibrillation, and cardiac arrest. (See WARNINGS, PRECAUTIONS, and OVERDOSAGE.)


Allergic: Allergic-type reactions are rare and may occur as a result of sensitivity to the local anesthetic or to other formulation ingredients, such as the antimicrobial preservative methylparaben contained in multiple-dose vials or sulfites in epinephrine-containing solutions. These reactions are characterized by signs such as urticaria, pruritus, erythema, angioneurotic edema (including laryngeal edema), tachycardia, sneezing, nausea, vomiting, dizziness, syncope, excessive sweating, elevated temperature, and possibly, anaphylactoid-like symptomatology (including severe hypotension). Cross sensitivity among members of the amide-type local anesthetic group has been reported. The usefulness of screening for sensitivity has not been definitely established.


Neurologic: The incidences of adverse neurologic reactions associated with the use of local anesthetics may be related to the total dose of local anesthetic administered and are also dependent upon the particular drug used, the route of administration, and the physical status of the patient. Many of these effects may be related to local anesthetic techniques, with or without a contribution from the drug.

In the practice of caudal or lumbar epidural block, occasional unintentional penetration of the subarachnoid space by the catheter or needle may occur. Subsequent adverse effects may depend partially on the amount of drug administered intrathecally and the physiological and physical effects of a dural puncture. A high spinal is characterized by paralysis of the legs, loss of consciousness, respiratory paralysis, and bradycardia.

Neurologic effects following epidural or caudal anesthesia may include spinal block of varying magnitude (including high or total spinal block); hypotension secondary to spinal block; urinary retention; fecal and urinary incontinence; loss of perineal sensation and sexual function; persistent anesthesia, paresthesia, weakness, paralysis of the lower extremities and loss of sphincter control all of which may have slow, incomplete, or no recovery; headache; backache; septic meningitis; meningismus; slowing of labor; increased incidence of forceps delivery; and cranial nerve palsies due to traction on nerves from loss of cerebrospinal fluid.

Neurologic effects following other procedures or routes of administration may include persistent anesthesia, paresthesia, weakness, paralysis, all of which may have slow, incomplete, or no recovery.


Overdosage



Reports of acute toxicity and/or death following overdosage of glucocorticoids are rare.  In the event of overdosage, no specific antidote is available; treatment is supportive and symptomatic.

The oral LD50 of dexamethasone in female mice was 6.5 g/kg.  The intravenous LD50 of dexamethasone sodium phosphate in female mice was 794 mg/kg.

Acute emergencies from local anesthetics are generally related to high plasma levels encountered during therapeutic use of local anesthetics or to unintended subarachnoid injection of local anesthetic solution. (See ADVERSE REACTIONS, WARNINGS, and PRECAUTIONS.)


Management of Local Anesthetic Emergencies: The first consideration is prevention, best accomplished by careful and constant monitoring of cardiovascular and respiratory vital signs and the patient’s state of consciousness after each local anesthetic injection. At the first sign of change, oxygen should be administered.

The first step in the management of systemic toxic reactions, as well as underventilation or apnea due to unintentional subarachnoid injection of drug solution, consists of immediate attention to the establishment and maintenance of a patent airway and effective assisted or controlled ventilation with 100% oxygen with a delivery system capable of permitting immediate positive airway pressure by mask. This may prevent convulsions if they have not already occurred.

If necessary, use drugs to control the convulsions. A 50 mg to 100 mg bolus IV injection of succinylcholine will paralyze the patient without depressing the central nervous or cardiovascular systems and facilitate ventilation. A bolus IV dose of 5 mg to 10 mg of diazepam or 50 mg to 100 mg of thiopental will permit ventilation and counteract central nervous system stimulation, but these drugs also depress central nervous system, respiratory, and cardiac function, add to postictal depression and may result in apnea. Intravenous barbiturates, anticonvulsant agents, or muscle relaxants should only be administered by those familiar with their use. Immediately after the institution of these ventilatory measures, the adequacy of the circulation should be evaluated. Supportive treatment of circulatory depression may require administration of intravenous fluids, and when appropriate, a vasopressor dictated by the clinical situation (such as ephedrine or epinephrine to enhance myocardial contractile force).

Endotracheal intubation, employing drugs and techniques familiar to the clinician, may be indicated after initial administration of oxygen by mask if difficulty is encountered in the maintenance of a patent airway, or if prolonged ventilatory support (assisted or controlled) is indicated.

Recent clinical data from patients experiencing local anesthetic-induced convulsions demonstrated rapid development of hypoxia, hypercarbia, and acidosis with bupivacaine within a minute of the onset of convulsions. These observations suggest that oxygen consumption and carbon dioxide production are greatly increased during local anesthetic convulsions and emphasize the importance of immediate and effective ventilation with oxygen which may avoid cardiac arrest.

If not treated immediately, convulsions with simultaneous hypoxia, hypercarbia, and acidosis plus myocardial depression from the direct effects of the local anesthetic may result in cardiac arrhythmias, bradycardia, asystole, ventricular fibrillation, or cardiac arrest. Respiratory abnormalities, including apnea, may occur. Underventilation or apnea due to unintentional subarachnoid injection of local anesthetic solution may produce these same signs and also lead to cardiac arrest if ventilatory support is not instituted. If cardiac arrest should occur, successful outcome may require prolonged resuscitative efforts.

The supine position is dangerous in pregnant women at term because of aortocaval compression by the gravid uterus. Therefore during treatment of systemic toxicity, maternal hypotension or fetal bradycardia following regional block, the parturient should be maintained in the left lateral decubitus position if possible, or manual displacement of the uterus off the great vessels be accomplished.

The mean seizure dosage of bupivacaine in rhesus monkeys was found to be 4.4 mg/kg with mean arterial plasma concentration of 4.5 mcg/mL. The intravenous and subcutaneous LD50 in mice is 6 mg/kg to 8 mg/kg and 38 mg/kg to 54 mg/kg respectively.


Dosage And Administration



Dexamethasone sodium phosphate injection, 10 mg/mL– For intravenous and intramuscular injection only.

Dexamethasone sodium phosphate injection can be given directly from the vial, or it can be added to Sodium Chloride Injection or Dextrose Injection and administered by intravenous drip.

Solutions used for intravenous administration or further dilution of this product should be preservative free when used in the neonate, especially the premature infant.

When it is mixed with an infusion solution, sterile precautions should be observed.  Since infusion solutions generally do not contain preservatives, mixtures should be used within 24 hours.

DOSAGE REQUIREMENTS ARE VARIABLE AND MUST BE INDIVIDUALIZED ON THE BASIS OF THE DISEASE AND THE RESPONSE OF THE PATIENT.

The dose of any local anesthetic administered varies with the anesthetic procedure, the area to be anesthetized, the vascularity of the tissues, the number of neuronal segments to be blocked, the depth of anesthesia and degree of muscle relaxation required, the duration of anesthesia desired, individual tolerance, and the physical condition of the patient. The smallest dose and concentration required to produce the desired result should be administered. Dosages of MARCAINE should be reduced for elderly and/or debilitated patients and patients with cardiac and/or liver disease. The rapid injection of a large volume of local anesthetic solution should be avoided and fractional (incremental) doses should be used when feasible.

For specific techniques and procedures, refer to standard textbooks.

There have been adverse event reports of chondrolysis in patients receiving intra-articular infusions of local anesthetics following arthroscopic and other surgical procedures.  MARCAINE is not approved for this use (see WARNINGS and DOSAGE AND ADMINISTRATION).

In recommended doses, MARCAINE produces complete sensory block, but the effect on motor function differs among the three concentrations.


0.25%—when used for caudal, epidural, or peripheral nerve block, produces incomplete motor block. Should be used for operations in which muscle relaxation is not important, or when another means of providing muscle relaxation is used concurrently. Onset of action may be slower than with the 0.5% or 0.75% solutions.

0.5%— provides motor blockade for caudal, epidural, or nerve block, but muscle relaxation may be inadequate for operations in which complete muscle relaxation is essential.

0.75%—produces complete motor block. Most useful for epidural block in abdominal operations requiring complete muscle relaxation, and for retrobulbar anesthesia. Not for obstetrical anesthesia.


The duration of anesthesia with MARCAINE is such that for most indications, a single dose is sufficient.

Maximum dosage limit must be individualized in each case after evaluating the size and physical status of the patient, as well as the usual rate of systemic absorption from a particular injection site. Most experience to date is with single doses of MARCAINE up to 225 mg with epinephrine 1:200,000 and 175 mg without epinephrine; more or less drug may be used depending on individualization of each case.

These doses may be repeated up to once every three hours. In clinical studies to date, total daily doses have been up to 400 mg. Until further experience is gained, this dose should not be exceeded in 24 hours. The duration of anesthetic effect may be prolonged by the addition of epinephrine.

The dosages in Table 1 have generally proved satisfactory and are recommended as a guide for use in the average adult. These dosages should be reduced for elderly or debilitated patients. Until further experience is gained, MARCAINE is not recommended for pediatric patients younger than 12 years. MARCAINE is contraindicated for obstetrical paracervical blocks, and is not recommended for intravenous regional anesthesia (Bier Block).

Use in Epidural Anesthesia: During epidural administration of MARCAINE, 0.5% and 0.75% solutions should be administered in incremental doses of 3 mL to 5 mL with sufficient time between doses to detect toxic manifestations of unintentional intravascular or intrathecal injection. In obstetrics, only the 0.5% and 0.25% concentrations should be used; incremental doses of 3 mL to 5 mL of the 0.5% solution not exceeding 50 mg to 100 mg at any dosing interval are recommended. Repeat doses should be preceded by a test dose containing epinephrine if not contraindicated. Use only the single-dose ampuls and single-dose vials for caudal or epidural anesthesia; the multiple-dose vials contain a preservative and therefore should not be used for these procedures.

Test Dose for Caudal and Lumbar Epidural Blocks: The Test Dose of MARCAINE (0.5% bupivacaine with 1:200,000 epinephrine in a 3 mL ampul) is recommended for use as a test dose when clinical conditions permit prior to caudal and lumbar epidural blocks. This may serve as a warning of unintended intravascular or subarachnoid injection. (See PRECAUTIONS.) The pulse rate and other signs should be monitored carefully immediately following each test dose administration to detect possible intravascular injection, and adequate time for onset of spinal block should be allotted to detect possible intrathecal injection. An intravascular or subarachnoid injection is still possible even if results of the test dose are negative. The test dose itself may produce a systemic toxic reaction, high spinal or cardiovascular effects from the epinephrine. (See WARNINGS and OVERDOSAGE.)

Use in Dentistry: The 0.5% concentration with epinephrine is recommended for infiltration and block injection in the maxillary and mandibular area when a longer duration of local anesthetic action is desired, such as for oral surgical procedures generally associated with significant postoperative pain. The average dose of 1.8 mL (9 mg) per injection site will usually suffice; an occasional second dose of 1.8 mL (9 mg) may be used if necessary to produce adequate anesthesia after making allowance for 2 to 10 minutes onset time. (See CLINICAL PHARMACOLOGY.) The lowest effective dose should be employed and time should be allowed between injections; it is recommended that the total dose for all injection sites, spread out over a single dental sitting, should not ordinarily exceed 90 mg for a healthy adult patient (ten 1.8 mL injections of 0.5% MARCAINE with epinephrine). Injections should be made slowly and with frequent aspirations. Until further experience is gained, MARCAINE in dentistry is not recommended for pediatric patients younger than 12 years.

Unused portions of solution not containing preservatives, i.e., those supplied in single-dose ampuls and single-dose vials, should be discarded following initial use.

This product should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. Solutions which are discolored or which contain particulate matter should not be administered.


Table 1. Recommended Concentrations and Doses of MARCAINE
Type of
Block
Conc.Each Dose Motor 
Block1
(mL)(mg)

Local

infiltration

0.25%4
 up to
max.
up to 
max.
Epidural 

0.75%2,4 10-20 75-150 complete 
0.5%4 
10-20 
50-100
moderate 
to complete
0.25%4 
10-20 
25-50 
partial
to moderate
Caudal 

0.5%4 
15-30 
75-150 
moderate 
to complete
 0.25%4
15-30 
37.5-75 
moderate
Peripheral 
 nerves
 0.5%4
 5 to
max.
25 to 
max.
moderate
to complete
 0.25%4
5 to 
 max.
 12.5 to
 max.
moderate
to complete
Retrobulbar3 0.75%4  2-415-30 complete
Sympathetic  0.25%20-50 50-125 — 
Dental3 0.5%
 w/epi
1.8-3.6 
 per site
9-18 
per site
Epidural3
Test Dose
 0.5%
 w/epi
2-310-15 
(10-15 micrograms epinephrine)

1With continuous (intermittent) techniques, repeat doses increase the degree of motor block. The first repeat dose of 0.5% may produce complete motor block. Intercostal nerve block with 0.25% may also produce complete motor block for intra-abdominal surgery.

2For single-dose use, not for intermittent epidural technique. Not for obstetrical anesthesia.

3See PRECAUTIONS.

4Solutions with or without epinephrine.


Intravenous And Intramuscular Injection



The initial dosage of dexamethasone sodium phosphate injection varies from 0.5 to 9 mg a day depending on the disease being treated.  In less severe diseases doses lower than 0.5 mg may suffice, while in severe diseases doses higher than 9 mg may be required.

The initial dosage should be maintained or adjusted until the patient’s response is satisfactory.  If a satisfactory clinical response does not occur after a reasonable period of time, discontinue dexamethasone sodium phosphate injection and transfer the patient to other therapy.

After a favorable initial response, the proper maintenance dosage should be determined by decreasing the initial dosage in small amounts to the lowest dosage that maintains an adequate clinical response.

Patients should be observed closely for signs that might require dosage adjustment, including changes in clinical status resulting from remissions or exacerbations of the disease, individual drug responsiveness, and the effect of stress (e.g., surgery, infection, trauma).  During stress it may be necessary to increase dosage temporarily.  If the drug is to be stopped after more than a few days of treatment, it usually should be withdrawn gradually.

When the intravenous route of administration is used, dosage usually should be the same as the oral dosage.  In certain overwhelming, acute, life-threatening situations, however, administration in dosages exceeding the usual dosages may be justified and may be in multiples of the oral dosages.  The slower rate of absorption by intramuscular administration should be recognized.


Shock



There is a tendency in current medical practice to use high (pharmacologic) doses of corticosteroids for the treatment of unresponsive shock.  The following dosages of dexamethasone sodium phosphate injection have been suggested by various authors:

Author

Dosage

Cavanagh1

3 mg/kg of body weight per 24 hours by constant intravenous infusion after an initial intravenous injection of 20 mg


Dietzman2

2 to 6 mg/kg of body weight as a single intravenous injection


Frank3

40 mg initially followed by repeat intravenous injection every 4 to 6 hours while shock persists


Oaks4

40 mg initially followed by repeat intravenous injection every 2 to 6 hours while shock persists


Schumer5

1 mg/kg of body weight as a single intravenous injection

Administration of high dose corticosteroid therapy should be continued only until the patient’s condition has stabilized and usually not longer than 48 to 72 hours.

Although adverse reactions associated with high dose, short term corticosteroid therapy are uncommon, peptic ulceration may occur.


Cerebral Edema



Dexamethasone sodium phosphate injection is generally administered initially in a dosage of 10 mg intravenously followed by four mg every six hours intramuscularly until the symptoms of cerebral edema subside.  Response is usually noted within 12 to 24 hours and dosage may be reduced after two to four days and gradually discontinued over a period of five to seven days. For palliative management of patients with recurrent or inoperable brain tumors, maintenance therapy with 2 mg two or three times a day may be effective.


Acute Allergic Disorders



In acute, self-limited allergic disorders or acute exacerbations of chronic allergic disorders, the following dosage schedule combining parenteral and oral therapy is suggested:

Dexamethasone sodium phosphate injection, first day, 4 or 8 mg intramuscularly.

Dexamethasone tablets, 0.75 mg: second and third days, 4 tablets in two divided doses each day; fourth day, 2 tablets in two divided doses; fifth and sixth days, 1 tablet each day; seventh day, no treatment; eighth day, follow-up visit.

This schedule is designed to ensure adequate therapy during acute episodes, while minimizing the risk of overdosage in chronic cases.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever the solution and container permit.


How Supplied



Dexamethasone Sodium Phosphate Injection, USP (Preservative Free) equivalent to 10 mg dexamethasone phosphate, is supplied in a single dose vial as follows:

Product

No.

NDC

No.

Strength

Vial Size

500601

63323-506-01

10 mg/mL

1 mL

Packaged in twenty-fives.

Dexamethasone Sodium Phosphate Injection, USP (Preserved) equivalent to 10 mg dexamethasone phosphate, is supplied in a multiple dose vial as follows:

Product

No.

NDC

No.

Strength

Vial Size

501610

63323-516-10

10 mg/mL

10 mL

Packaged in tens.

Vial stoppers do not contain natural rubber latex.

These solutions are not for spinal anesthesia.


Store at 20 to 25°C (68 to 77°F). [See USP Controlled Room Temperature.]


MARCAINE ―Solutions of MARCAINE that do not contain epinephrine may be autoclaved. Autoclave at 15-pound pressure, 121°C (250°F) for 15 minutes.

NDC No.ContainerFillQuantity
0.25%—Contains 2.5 mg bupivacaine hydrochloride per mL.
0409-1559-10Single-dose vials10 mLbox of 10
0409-1559-30Single-dose vials30 mLbox of 10
0409-1587-50Multiple-dose vials50 mLbox of 1

0.5%—Contains 5 mg bupivacaine hydrochloride per mL.
0409-1560-10Single-dose vials10 mLbox of 10
0409-1560-29Single-dose vials30 mLbox of 10
0409-1610-50Multiple-dose vials50 mLbox of 1

0.75%—Contains 7.5 mg bupivacaine hydrochloride per mL.
0409-1582-10Single-dose vials10 mLbox of 10
0409-1582-29Single-dose vials30 mLbox of 10

MARCAINE with epinephrine 1:200,000 (as bitartrate)―Solutions of MARCAINE that contain epinephrine should not be autoclaved and should be protected from light. Do not use the solution if its color is pinkish or darker than slightly yellow or if it contains a precipitate.

NDC No.ContainerFillQuantity
0.25% with epinephrine 1:200,000—Contains 2.5 mg bupivacaine hydrochloride per mL.
0409-1746-10Single-dose vials10 mLbox of 10
0409-1746-30Single-dose vials30 mLbox of 10
0409-1752-50Multiple-dose vials50 mLbox of 1

0.5% with epinephrine 1:200,000—Contains 5 mg bupivacaine hydrochloride per mL.
0409-1749-03Single-dose ampuls3 mLbox of 10
0409-1749-10Single-dose vials10 mLbox of 10
0409-1749-29Single-dose vials30 mLbox of 10
0409-1755-50Multiple-dose vials50 mLbox of 1

Revised: 10/2011

 

Printed in USA                           EN-2916        

Hospira, Inc., Lake Forest, IL 60045 USA


Storage



Store at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature].  Sensitive to heat. Do not autoclave.

Protect from freezing.

Protect from light.

Single dose vials–Store in container until time of use.  Discard unused portion.

Multiple dose vials–Store in container until contents are used.


References



  • Cavanagh, D.; Singh, K.B.: Endotoxin shock in pregnancy and abortion, in: “Corticosteroids in the Treatment of Shock”, Schumer, W.; Nyhus, L.M., Editors, Urbana, University of Illinois Press, 1970, pp. 86-96.
  • Dietzman, R.H.; Ersek, R.A.; Bloch, J.M.; Lilleheir, R.C.: High-output, low-resistance gram-negative septic shock in man, Angiology 20: 691-700, Dec. 1969.
  • Frank, E.: Clinical observations in shock and management (in: Shields, T.F., ed.: Symposium on current concepts and management of shock), J. Maine Med. Ass. 59: 195-200, Oct. 1968.
  • Oaks, W. W.; Cohen, H.E.: Endotoxin shock in the geriatric patient, Geriat. 22: 120-130, Mar. 1967.
  • Schumer, W.; Nyhus, L.M.: Corticosteroid effect on biochemical parameters of human oligemic shock, Arch. Surg. 100: 405-408, Apr. 1970.

Otc - Active Ingredient



Section Text

Active Ingredient                                  Purpose

Povidone Iodine 10% v/v                        Antiseptic                          


Purpose:




Purpose:

  • First aid antiseptic to help prevent skin infection in minor cuts, scrapes and burns.
  • For preparation of the skin prior to surgery.
  • Helps reduce bacteria that can potentially cause skin infections.

Warnings:



Section Text

  • FOR EXTERNAL USE ONLY

Do Not Use:




  • As a first aid antiseptic for more than 1 week.
  • In the eyes.
  • Over large areas of the body.

Ask A Doctor Before Use If You Have:




  • Deep puncture wounds
  • Animal bites
  • Serious burns

Stop Use:




  • If irritation and redness develop
  • If condition persists for more than 72 hours, consult a physician.

Keep Out Of Reach Of Children



Keep out of reach of children.If swallowed, get medical help or contact a Poison Control Center.



Directions Povidone Iodine:



Tear at notch, remove applicator, use only once.

As a first aid antiseptic

  • clean affected area
  • apply 1 to 3 times daily
  • may be covered with a sterile bandage, if bandaged let dry.

  • For preoperative patient skin preparation

    • clean area
    • apply to operative site prior to surgery using the applicator


Other Information:



Store at room temperature.

Avoid excessive heat


Indications & Usage



For use as an

  • first aid antiseptic
  • pre-operative skin preperation

Inactive Ingredients



Inactive ingredients: nonoxynol-9, water


Active Ingredient



Isopropyl Alcohol 70% v/v


Purpose



Antiseptic


Uses



For first aid to decrease germs in

  • minor cuts
  • scrapes
  • burns
  • For preparation of the skin prior to injection


Do Not Use



with electrocautery procedures


When Using This Product Do Not



  • get into eyes
  • apply over large areas of the body
  • in case of deep or puncture wounds, animal bites or serious burns consult a doctor

Stop Use And Ask A Doctor If



  • condition persists or gets worse or lasts for more than 72 hours
  • do not use longer than 1 week unless directed by a doctor

Keep Out Of Reach Of Children.



If swallowed, get medical help or contact a Poison Control Center right away.


Directions



  • apply to skin as needed
  • discard after single use

Other Information



Protect from freezing and avoid excessive heat


Inactive Ingredient



Water


Package Label.Principal Display Panel



NDC: 76420-810-01 Rx Only

Mardex-25™

Kit Contains

1 Bupivacaine HCl 0.25% Single Dose Vial (10mL)

1 Dexamethasone Sodium Phosphate Inj., USP 10mg/mL (1mL)

1 Povidone-Iodine Swabsticks (3 Swabs)

3 Isopropyl Alcohol 70% Prep Pads

1 Pair Nitrile Powder Free Sterile Gloves (M)

1 Drape

1 Adhesive Bandage

5 Non Sterile 4x4 Gauze

Needles and Syringes Not Included

1 Dose

Single Use Only

Distributed by:

Enovachem™

PHARMACEUTICALS

Torrance, CA 90501


* Please review the disclaimer below.