FDA Label for Tacrolimus

View Indications, Usage & Precautions

    1. WARNING: MALIGNANCIES AND SERIOUS INFECTIONS
    2. 1.1 PROPHYLAXIS OF ORGAN REJECTION IN KIDNEY, HEART, OR LUNG TRANSPLANT
    3. 2.1 IMPORTANT ADMINISTRATION INSTRUCTIONS
    4. CAPSULES
    5. INTRAVENOUS INJECTION
    6. ORAL FORMULATION (CAPSULES)
    7. 2.4 DOSAGE ADJUSTMENT IN PATIENTS WITH RENAL IMPAIRMENT
    8. 2.5 DOSAGE ADJUSTMENT IN PATIENTS WITH HEPATIC IMPAIRMENT
    9. 2.6 THERAPEUTIC DRUG MONITORING
    10. 3 DOSAGE FORMS AND STRENGTHS
    11. 4 CONTRAINDICATIONS
    12. 5.1 LYMPHOMA AND OTHER MALIGNANCIES
    13. 5.2 SERIOUS INFECTIONS
    14. 5.3 NOT INTERCHANGEABLE WITH EXTENDED-RELEASE TACROLIMUS PRODUCTS - MEDICATION ERRORS
    15. 5.4 NEW ONSET DIABETES AFTER TRANSPLANT
    16. 5.5 NEPHROTOXICITY
    17. 5.6 NEUROTOXICITY
    18. 5.7 HYPERKALEMIA
    19. 5.8 HYPERTENSION
    20. 5.9 ANAPHYLACTIC REACTIONS WITH TACROLIMUS INJECTION
    21. 5.10 NOT RECOMMENDED FOR USE WITH SIROLIMUS
    22. 5.11 INTERACTIONS WITH CYP3A4 INHIBITORS AND INDUCERS
    23. 5.12 QT PROLONGATION
    24. 5.13 MYOCARDIAL HYPERTROPHY
    25. 5.14 IMMUNIZATIONS
    26. 5.15 PURE RED CELL APLASIA
    27. 6 ADVERSE REACTIONS
    28. 6.1 CLINICAL STUDIES EXPERIENCE
    29. 6.2 POSTMARKETING EXPERIENCE
    30. 7.1 MYCOPHENOLIC ACID
    31. 7.2 EFFECTS OF OTHER DRUGS ON TACROLIMUS
    32. MATERNAL ADVERSE REACTIONS
    33. FETAL/NEONATAL ADVERSE REACTIONS
    34. LABOR OR DELIVERY
    35. HUMAN DATA
    36. ANIMAL DATA
    37. RISK SUMMARY
    38. CONTRACEPTION
    39. INFERTILITY
    40. 8.4 PEDIATRIC USE
    41. LIVER TRANSPLANTATION
    42. LUNG TRANSPLANTATION
    43. 8.5 GERIATRIC USE
    44. 8.6 RENAL IMPAIRMENT
    45. 8.7 HEPATIC IMPAIRMENT
    46. 8.8 RACE OR ETHNICITY
    47. 10 OVERDOSAGE
    48. 11 DESCRIPTION
    49. 12.1 MECHANISM OF ACTION
    50. 12.3 PHARMACOKINETICS
    51. ABSORPTION
    52. FOOD EFFECTS
    53. DISTRIBUTION
    54. METABOLISM
    55. EXCRETION
    56. PATIENTS WITH RENAL IMPAIRMENT
    57. PATIENTS WITH HEPATIC IMPAIRMENT
    58. PATIENTS WITH CYSTIC FIBROSIS
    59. RACIAL OR ETHNIC GROUPS
    60. MALE AND FEMALE PATIENTS
    61. DRUG INTERACTION STUDIES
    62. CARCINOGENESIS
    63. MUTAGENESIS
    64. IMPAIRMENT OF FERTILITY
    65. TACROLIMUS/AZATHIOPRINE (AZA)
    66. TACROLIMUS/MYCOPHENOLATE MOFETIL (MMF)
    67. 14.2 LIVER TRANSPLANTATION
    68. 14.3 HEART TRANSPLANTATION
    69. 14.4 LUNG TRANSPLANTATION
    70. 15 REFERENCES
    71. 16 HOW SUPPLIED/STORAGE AND HANDLING
    72. 17 PATIENT COUNSELING INFORMATION
    73. 17.1 ADMINISTRATION
    74. 17.2 DEVELOPMENT OF LYMPHOMA AND OTHER MALIGNANCIES
    75. 17.3 INCREASED RISK OF INFECTION
    76. 17.4 NEW ONSET DIABETES AFTER TRANSPLANT
    77. 17.5 NEPHROTOXICITY
    78. 17.6 NEUROTOXICITY
    79. 17.7 HYPERKALEMIA
    80. 17.8 HYPERTENSION
    81. 17.9 DRUG INTERACTIONS
    82. 17.10 PREGNANCY, LACTATION AND INFERTILITY
    83. 17.11 MYOCARDIAL HYPERTROPHY
    84. 17.12 IMMUNIZATIONS
    85. PACKAGE LABEL.PRINCIPAL DISPLAY PANEL

Tacrolimus Product Label

The following document was submitted to the FDA by the labeler of this product Bryant Ranch Prepack. The document includes published materials associated whith this product with the essential scientific information about this product as well as other prescribing information. Product labels may durg indications and usage, generic names, contraindications, active ingredients, strength dosage, routes of administration, appearance, warnings, inactive ingredients, etc.

Warning: Malignancies And Serious Infections



Increased risk for developing serious infections and malignancies with tacrolimus or other immunosuppressants that may lead to hospitalization or death. ( 5.1, 5.2)


1.1 Prophylaxis Of Organ Rejection In Kidney, Heart, Or Lung Transplant



Tacrolimus capsules are indicated for the prophylaxis of organ rejection, in adult patients receiving allogeneic kidney transplant [see Clinical Studies (14.1)] , liver transplant [see Clinical Studies (14.2)], heart transplant [see Clinical Studies (14.3)] or lung transplant [see Clinical Studies (14.4)] in combination with other immunosuppressants.

Additional pediatric use information is approved for Astellas Pharma US, Inc.’s Prograf (tacrolimus) products. However, due to Astellas Pharma US, Inc.’s marketing exclusivity rights, this drug product is not labeled with that information.


2.1 Important Administration Instructions



Tacrolimus capsules should not be used without supervision by a physician with experience in immunosuppressive therapy.

Tacrolimus capsule is not interchangeable or substitutable for other tacrolimus extended-release products. This is because rate of absorption following the administration of an extended-release tacrolimus product is not equivalent to that of an immediate-release tacrolimus drug product. Under-or overexposure to tacrolimus may result in graft rejection or other serious adverse reactions. Changes between tacrolimus immediate-release and extended-release dosage forms must occur under physician supervision [see Warnings and Precautions (5.3)]

Intravenous Formulation -Administration Precautions due to Risk of Anaphylaxis

Intravenous use is recommended for patients who cannot tolerate oral formulations, and conversion from intravenous to oral tacrolimus is recommended as soon as oral therapy can be tolerated to minimize the risk of anaphylactic reactions that occurred with injectables containing castor oil derivatives [see Warnings and Precautions (5.9)] .

Patients receiving tacrolimus injection should be under continuous observation for at least the first 30 minutes following the start of the infusion and at frequent intervals thereafter. If signs or symptoms of anaphylaxis occur, the infusion should be stopped. An aqueous solution of epinephrine should be available at the bedside as well as a source of oxygen.

Oral Formulations (Capsules)

If patients are able to initiate oral therapy, the recommended starting doses should be initiated. Tacrolimus capsules may be taken with or without food. However, since the presence of food affects the bioavailability of tacrolimus, if taken with food, it should be taken consistently the same way each time [see Clinical Pharmacology (12.3)] .

General Administration Instructions

Patients should not eat grapefruit or drink grapefruit juice in combination with tacrolimus [see Drug Interactions (7.2)] .

Tacrolimus should not be used simultaneously with cyclosporine. Tacrolimus or cyclosporine should be discontinued at least 24 hours before initiating the other. In the presence of elevated tacrolimus or cyclosporine concentrations, dosing with the other drug usually should be further delayed.

Therapeutic drug monitoring (TDM) is recommended for all patients receiving tacrolimus [see Dosage and Administration (2.6)] .


Capsules



If patients are able to tolerate oral therapy, the recommended oral starting doses should be initiated. The initial dose of tacrolimus capsules should be administered no sooner than 6 hours after transplantation in the liver, heart, or lung transplant patients. In kidney transplant patients, the initial dose of tacrolimus capsules may be administered within 24 hours of transplantation, but should be delayed until renal function has recovered.

The initial oral tacrolimus capsule dosage recommendations for adult patients with kidney, liver, heart, or lung transplants and whole blood trough concentration range are shown in Table 1. Perform therapeutic drug monitoring (TDM) to ensure that patients are within the ranges listed in Table 1.

Table 1. Summary of Initial Oral Tacrolimus Capsules Dosage Recommendations and Whole Blood Trough Concentration Range in Adults
  • African-American patients may require higher doses compared to Caucasians (see Table 2)
  • In a second smaller trial, the initial dose of tacrolimus was 0.15 to 0.2 mg/kg/day and observed tacrolimus concentrations were 6 to 16 ng/mL during month 1 to 3 and 5 to 12 ng/mL during month 4 to 12 [see Clinical Studies (14.1)] .
  • Patients with cystic fibrosis may require higher doses due to lower bioavailability (12.3)]. [see Clinical Pharmacology (14.3)] .

Patient Population

Tacrolimus Capsules 1
Initial Oral Dosage

Whole Blood Trough Concentration Range

Kidney Transplant

With Azathioprine

0.2 mg/kg/day, divided in two doses, administered every 12 hours

Month 1 to 3: 7 to 20 ng/mL

Month 4 to 12: 5 to 15 ng/mL

With MMF/IL-2 receptor antagonist 2

0.1 mg/kg/day, divided in two doses, administered every 12 hours

Month 1 to 12: 4 to 11 ng/mL

Liver Transplant

With corticosteroids only

0.10 to 0.15 mg/kg/day, divided in two doses, administered every 12 hours

Month 1 to 12: 5 to 20 ng/mL

Heart Transplant

With azathioprine or MMF

0.075 mg/kg/day, divided in two doses, administered every 12 hours

Month 1 to 3: 10 to 20 ng/mL

Month ≥ 4: 5 to 15 ng/mL

Lung Transplant

With azathioprine or MMF

0.075 mg/kg/day 3, divided in two doses, administered every 12 hours

Month 1-3: 10-15 ng/mL

Month 4-12: 8-12 ng/mL

Dosage should be titrated based on clinical assessments of rejection and tolerability. Tacrolimus dosages lower than the recommended initial dosage may be sufficient as maintenance therapy. Adjunct therapy with adrenal corticosteroids is recommended early post-transplant.

The data in kidney transplant patients indicate that the African-American patients required a higher dose to attain comparable trough concentrations compared to Caucasian patients (Table 2) [see Use in Specific Populations (8.8), Clinical Pharmacology (12.3)] .

Table 2. Comparative Dose and Trough Concentrations Based on Race

Time After Transplant

Caucasian
N = 114

African-American
N = 56

Dose

(mg/kg)

Trough Concentrations

(ng/mL)

Dose

(mg/kg)

Trough Concentrations

(ng/mL)

Day 7

0.18

12.0

0.23

10.9

Month 1

0.17

12.8

0.26

12.9

Month 6

0.14

11.8

0.24

11.5

Month 12

0.13

10.1

0.19

11.0

In lung transplantation, cystic fibrosis patients may have a reduced bioavailability of orally administered tacrolimus resulting in the need for higher doses to achieve target tacrolimus trough concentrations. Monitor tacrolimus trough concentrations and adjust the dose accordingly.


Intravenous Injection



Tacrolimus injection should be used only as a continuous intravenous infusion and should be discontinued as soon as the patient can tolerate oral administration. The first dose of tacrolimus capsules should be given 8 to 12 hours after discontinuing the intravenous infusion.

The recommended starting dose of tacrolimus injection is 0.03 to 0.05 mg/kg/day in kidney or liver transplant, 0.01 mg/kg/day in heart transplant, and 0.01-0.03 mg/kg/day in lung transplant, given as a continuous intravenous infusion. Adult patients should receive doses at the lower end of the dosing range. Concomitant adrenal corticosteroid therapy is recommended early post-transplantation.

The whole blood trough concentration range described in Table 1 pertains to oral administration of tacrolimus only; while monitoring tacrolimus concentrations in patients receiving tacrolimus injection as a continuous intravenous infusion may have some utility, the observed concentrations will not represent comparable exposures to those estimated by the trough concentrations observed in patients on oral therapy.

Anaphylactic reactions have occurred with injectables containing castor oil derivatives, such as tacrolimus injection. Therefore, monitoring for signs and symptoms of anaphylaxis is recommended [see Warnings and Precautions (5.9)] .


Oral Formulation (Capsules)



Pediatric patients, in general, need higher tacrolimus doses compared to adults: the higher dose requirements may decrease as the child grows older. Recommendations for the initial oral dosage for pediatric transplant patients and whole blood trough concentration range are shown in Table 3. Perform TDM to ensure that patients are within the ranges listed in Table 3.

Table 3. Summary of Initial Tacrolimus Capsule Dosage Recommendations and Whole Blood Trough Concentration Range in Children

2. See Clinical Studies (14.2), Liver Transplantation.

3. Dose at 0.1 mg/kg/day if antibody induction treatment is administered.

4. Patients with cystic fibrosis may require higher doses due to lower bioavailability [See Clinical Pharmacology (12.3)].

Patient Population

Initial Tacrolimus Capsule Dosing

Whole Blood Trough Concentration Range

Pediatric liver transplant patients 2

0.15 to 0.2 mg/kg/day capsules divided in two doses, administered every 12 hours

Month 1 to 12: 5 to 20 ng/mL

In lung transplantation, cystic fibrosis patients may have a reduced bioavailability of orally administered tacrolimus resulting in the need for higher doses to achieve target tacrolimus trough concentrations. Monitor tacrolimus trough concentrations and adjust the dose accordingly.

For conversion of pediatric patients from tacrolimus for oral suspension to tacrolimus capsules or from tacrolimus capsules to tacrolimus for oral suspension, the total daily dose should remain the same. Following conversion from one formulation to another formulation of tacrolimus, therapeutic drug monitoring is recommended [see Dosage and Administration (2.6)] .

Intravenous Injection
If a patient is unable to receive an oral formulation, the patient may be started on tacrolimus injection. For pediatric liver transplant patients, the intravenous dose is 0.03 to 0.05 mg/kg/day.

Additional pediatric use information is approved for Astellas Pharma US, Inc.’s Prograf (tacrolimus) products. However, due to Astellas Pharma US, Inc.’s marketing exclusivity rights, this drug product is not labeled with that information.


2.4 Dosage Adjustment In Patients With Renal Impairment



Due to its potential for nephrotoxicity, consider dosing tacrolimus at the lower end of the therapeutic dosing range in patients who have received a liver, heart, or lung transplant, and have pre-existing renal impairment. Further reductions in dose below the targeted range may be required.

In kidney transplant patients with post-operative oliguria, the initial dose of tacrolimus capsule should be administered no sooner than 6 hours and within 24 hours of transplantation, but may be delayed until renal function shows evidence of recovery [see Dosage and Administration (2.2), Warnings and Precautions (5.5), Use in Specific Populations (8.6), and Clinical Pharmacology (12.3)] .


2.5 Dosage Adjustment In Patients With Hepatic Impairment



Due to the reduced clearance and prolonged half-life, patients with severe hepatic impairment (Child Pugh ≥ 10) may require lower doses of tacrolimus. Close monitoring of blood concentrations is warranted.

The use of tacrolimus in liver transplant recipients experiencing post-transplant hepatic impairment may be associated with increased risk of developing renal insufficiency related to high whole blood concentrations of tacrolimus. These patients should be monitored closely, and dosage adjustments should be considered. Some evidence suggests that lower doses should be used in these patients [see Dosage and Administration (2.2), Warnings and Precautions (5.5), Use in Specific Populations (8.7), and Clinical Pharmacology (12.3)].


2.6 Therapeutic Drug Monitoring



Monitoring of tacrolimus blood concentrations in conjunction with other laboratory and clinical parameters is considered an essential aid to patient management for the evaluation of rejection, toxicity, dose adjustments, and compliance. Whole blood trough concentration range can be found in Table 1.

Factors influencing frequency of monitoring include but are not limited to hepatic or renal dysfunction, the addition or discontinuation of potentially interacting drugs and the post-transplant time. Blood concentration monitoring is not a replacement for renal and liver function monitoring and tissue biopsies. Data from clinical trials show that tacrolimus whole blood concentrations were most variable during the first week post-transplantation.

The relative risks of toxicity and efficacy failure are related to tacrolimus whole blood trough concentrations. Therefore, monitoring of whole blood trough concentrations is recommended to assist in the clinical evaluation of toxicity and efficacy failure.

Methods commonly used for the assay of tacrolimus include high-performance liquid chromatography with tandem mass spectrometric detection (HPLC/MS/MS) and immunoassays. Immunoassays may react with metabolites as well as the parent compound. Therefore, assay results obtained with immunoassays may have a positive bias relative to results of HPLC/MS. The bias may depend upon the specific assay and laboratory. Comparison of the concentrations in published literature to patient concentrations using the current assays must be made with detailed knowledge of the assay methods and biological matrices employed. Whole blood is the matrix of choice and specimens should be collected into tubes containing ethylene diamine tetraacetic acid (EDTA) anticoagulant. Heparin anticoagulation is not recommended because of the tendency to form clots on storage. Samples which are not analyzed immediately should be stored at room temperature or in a refrigerator and assayed within 7 days; see assay instructions for specifics. If samples are to be kept longer, they should be deep frozen at -20° C. One study showed drug recovery > 90% for samples stored at -20° C for 6 months, with reduced recovery observed after 6 months.

Additional pediatric use information is approved for Astellas Pharma US, Inc.’s Prograf (tacrolimus) products. However, due to Astellas Pharma US, Inc.’s marketing exclusivity rights, this drug product is not labeled with that information.


3 Dosage Forms And Strengths



Tacrolimus capsules, USP are available in 0.5 mg, 1 mg, and 5 mg strengths.

Oblong, hard capsule for oral administration contains tacrolimus as follows:

  • 0.5 mg, light-yellow color, imprinted with “TCR” on the capsule cap and “0.5” on capsule body.
  • 1 mg, white color, imprinted with “TCR” on the capsule cap and “1” on capsule body.
  • 5 mg, pink color, imprinted with “TCR” on the capsule cap and “5” on capsule body.

4 Contraindications



Tacrolimus capsules are contraindicated in patients with a hypersensitivity to tacrolimus. Tacrolimus injection is contraindicated in patients with a hypersensitivity to HCO-60 (polyoxyl 60 hydrogenated castor oil). Hypersensitivity symptoms reported include dyspnea, rash, pruritus, and acute respiratory distress syndrome [see Adverse Reactions (6)] .


5.1 Lymphoma And Other Malignancies



Patients receiving immunosuppressants, including tacrolimus, are at increased risk of developing lymphomas and other malignancies, particularly of the skin. The risk appears to be related to the intensity and duration of immunosuppression rather than to the use of any specific agent.

As usual for patients with increased risk for skin cancer, examine patients for skin changes; exposure to sunlight and UV light should be limited by wearing protective clothing and using a broad-spectrum sunscreen with a high protection factor.

Post-transplant lymphoproliferative disorder (PTLD) has been reported in immunosuppressed organ transplant recipients. The majority of PTLD events appear related to Epstein Barr Virus (EBV) infection. The risk of PTLD appears greatest in those individuals who are EBV seronegative, a population which includes many young children. Monitor EBV serology during treatment.


5.2 Serious Infections



Patients receiving immunosuppressants, including tacrolimus, are at increased risk of developing bacterial, viral, fungal, and protozoal infections, including opportunistic infections. These infections may lead to serious, including fatal, outcomes. Serious viral infections reported include:

  • Polyomavirus-associated nephropathy (PVAN), mostly due to BK virus infection
  • JC virus-associated progressive multifocal leukoencephalopathy (PML)
  • Cytomegalovirus infections: CMV seronegative transplant patients who receive an organ from a CMV seropositive donor disease are at higher risk of developing CMV viremia and CMV disease.
  • Monitor for the development of infection and adjust the immunosuppressive regimen to balance the risk of rejection with the risk of infection [see Adverse Reactions (6.1, 6.2)] .


5.3 Not Interchangeable With Extended-Release Tacrolimus Products - Medication Errors



Medication errors, including substitution and dispensing errors, between tacrolimus immediate-release products and tacrolimus extended-release products were reported outside the U.S. This led to serious adverse reactions, including graft rejection, or other adverse reactions due to under-or overexposure to tacrolimus. Tacrolimus is not interchangeable or substitutable for tacrolimus extended-release products. Changes between tacrolimus immediate-release and extended-release dosage forms must occur under physician supervision. Instruct patients and caregivers to recognize the appearance of tacrolimus dosage forms [see Dosage Forms and Strengths (3)] and to confirm with the healthcare provider if a different product is dispensed.


5.4 New Onset Diabetes After Transplant



Tacrolimus was shown to cause new onset diabetes mellitus in clinical trials of kidney, liver, heart, or lung transplantation. New onset diabetes after transplantation may be reversible in some patients. African-American and Hispanic kidney transplant patients are at an increased risk. Blood glucose concentrations should be monitored closely in patients using tacrolimus [see Adverse Reactions (6.1)] .


5.5 Nephrotoxicity



Tacrolimus, like other calcineurin inhibitors, can cause acute or chronic nephrotoxicity. Nephrotoxicity was reported in clinical trials [see Adverse Reactions (6.1)] . Consider dosage reduction in patients with elevated serum creatinine and tacrolimus whole blood trough concentrations greater than the recommended range. The risk for nephrotoxicity may increase when tacrolimus is concomitantly administered with CYP3A inhibitors (by increasing tacrolimus whole blood concentrations) or drugs associated with nephrotoxicity (e.g., aminoglycosides, ganciclovir, amphotericin B, cisplatin, nucleotide reverse transcriptase inhibitors, protease inhibitors) [see Drug Interactions (7.2)] . Monitor renal function and consider dosage reduction if nephrotoxicity occurs.


5.6 Neurotoxicity



Tacrolimus may cause a spectrum of neurotoxicities. The most severe neurotoxicities include posterior reversible encephalopathy syndrome (PRES), delirium, seizure and coma; others include tremors, paresthesias, headache, mental status changes, and changes in motor and sensory functions [see Adverse Reactions (6.1, 6.2)] . As symptoms may be associated with tacrolimus whole blood trough concentrations at or above the recommended range, monitor for neurologic symptoms and consider dosage reduction or discontinuation of tacrolimus if neurotoxicity occurs.


5.7 Hyperkalemia



Hyperkalemia has been reported with tacrolimus use. Serum potassium levels should be monitored. Careful consideration should be given prior to use of other agents also associated with hyperkalemia (e.g., potassium-sparing diuretics, ACE inhibitors, angiotensin receptor blockers) during tacrolimus therapy [see Adverse Reactions (6.1)] Monitor serum potassium levels periodically during treatment.


5.8 Hypertension



Hypertension is a common adverse effect of tacrolimus therapy and may require antihypertensive therapy [see Adverse Reactions (6.1)] . The control of blood pressure can be accomplished with any of the common antihypertensive agents, though careful consideration should be given prior to use of antihypertensive agents associated with hyperkalemia (e.g., potassium-sparing diuretics, ACE inhibitors, angiotensin receptor blockers) [see Warnings and Precautions (5.7)] . Calcium-channel blocking agents may increase tacrolimus blood concentrations and therefore require dosage reduction of tacrolimus [see Drug Interactions (7.2)].


5.9 Anaphylactic Reactions With Tacrolimus Injection



Anaphylactic reactions have occurred with injectables containing castor oil derivatives, including tacrolimus, in a small percentage of patients (0.6%). The exact cause of these reactions is not known. Tacrolimus injection should be reserved for patients who are unable to take tacrolimus orally. Monitor patients for anaphylaxis when using the intravenous route of administration [see Dosage and Administration (2.1)].




Tacrolimus is not recommended for use with sirolimus:

  • The use of sirolimus with tacrolimus in studies of de novo liver transplant patients was associated with an excess mortality, graft loss, and hepatic artery thrombosis (HAT), and is not recommended.
  • The use of sirolimus (2 mg per day) with tacrolimus in heart transplant patients in a U.S. trial was associated with increased risk of renal function impairment, wound healing complications, and insulin-dependent post-transplant diabetes mellitus, and is not recommended [see Clinical Studies (14.3)] .

5.11 Interactions With Cyp3a4 Inhibitors And Inducers



When co-administering tacrolimus with strong CYP3A4 inhibitors (e.g., telaprevir, boceprevir, ritonavir, ketoconazole, itraconazole, voriconazole, clarithromycin) and strong inducers (e.g., rifampin, rifabutin), adjustments in the dosing regimen of tacrolimus and subsequent frequent monitoring of tacrolimus whole blood trough concentrations and tacrolimus-associated adverse reactions are recommended. A rapid, sharp rise in tacrolimus levels has been reported after co-administration with a strong CYP3A4 inhibitor, clarithromycin, despite an initial reduction of tacrolimus dose. Early and frequent monitoring of tacrolimus whole blood trough levels is recommended [see Drug Interactions (7.2)] .


5.12 Qt Prolongation



Tacrolimus may prolong the QT/QTc interval and may cause Torsade de Pointes. Avoid tacrolimus in patients with congenital long QT syndrome. In patients with congestive heart failure, bradyarrhythmias, those taking certain antiarrhythmic medications or other medicinal products that lead to QT prolongation, and those with electrolyte disturbances such as hypokalemia, hypocalcemia, or hypomagnesemia, consider obtaining electrocardiograms and monitoring electrolytes (magnesium, potassium, calcium) periodically during treatment.

When co-administering tacrolimus with other substrates and/or inhibitors of CYP3A4 that also have the potential to prolong the QT interval, a reduction in tacrolimus dose, frequent monitoring of tacrolimus whole blood concentrations, and monitoring for QT prolongation is recommended. Use of tacrolimus with amiodarone has been reported to result in increased tacrolimus whole blood concentrations with or without concurrent QT prolongation [see Drug Interactions (7.2)] .


5.13 Myocardial Hypertrophy



Myocardial hypertrophy has been reported in infants, children, and adults, particularly those with high tacrolimus trough concentrations, and is generally manifested by echocardiographically demonstrated concentric increases in left ventricular posterior wall and interventricular septum thickness. This condition appears reversible in most cases following dose reduction or discontinuance of therapy. In patients who develop renal failure or clinical manifestations of ventricular dysfunction while receiving tacrolimus therapy, echocardiographic evaluation should be considered. If myocardial hypertrophy is diagnosed, dosage reduction or discontinuation of tacrolimus should be considered [see Adverse Reactions (6.2)] .


5.14 Immunizations



Whenever possible, administer the complete complement of vaccines before transplantation and treatment with tacrolimus.

The use of live vaccines should be avoided during treatment with tacrolimus; examples include (not limited to) the following: intranasal influenza, measles, mumps, rubella, oral polio, BCG, yellow fever, varicella, and TY21a typhoid vaccines.

Inactivated vaccines noted to be safe for administration after transplantation may not be sufficiently immunogenic during treatment with tacrolimus.


5.15 Pure Red Cell Aplasia



Cases of pure red cell aplasia (PRCA) have been reported in patients treated with tacrolimus. A mechanism for tacrolimus-induced PRCA has not been elucidated. All patients reported risk factors for PRCA such as parvovirus B19 infection, underlying disease, or concomitant medications associated with PRCA. If PRCA is diagnosed, discontinuation of tacrolimus should be considered [see Adverse Reactions (6.2)] .


6 Adverse Reactions



The following serious and otherwise important adverse drug reactions are discussed in greater detail in other sections of labeling:

6.1 Clinical Studies Experience



Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. In addition, the clinical trials were not designed to establish comparative differences across study arms with regards to the adverse reactions discussed below.


6.2 Postmarketing Experience



The following adverse reactions have been reported from worldwide marketing experience with tacrolimus. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Decisions to include these reactions in labeling are typically based on one or more of the following factors: (1) seriousness of the reaction, (2) frequency of the reporting, or (3) strength of causal connection to the drug.

Other reactions include:

  • Cardiovascular: Atrial fibrillation, atrial flutter, cardiac arrhythmia, cardiac arrest, electrocardiogram T wave abnormal, flushing, myocardial infarction, myocardial ischemia, pericardial effusion, QT prolongation, Torsade de Pointes, venous thrombosis deep limb, ventricular extrasystoles, ventricular fibrillation, myocardial hypertrophy
  • Gastrointestinal: Bile duct stenosis, colitis, enterocolitis, gastroenteritis, gastroesophageal reflux disease, hepatic cytolysis, hepatic necrosis, hepatotoxicity, impaired gastric emptying, liver fatty, mouth ulceration, pancreatitis hemorrhagic, pancreatitis necrotizing, stomach ulcer, veno-occlusive liver disease
  • Hemic/Lymphatic: Agranulocytosis, disseminated intravascular coagulation, hemolytic anemia, neutropenia, febrile neutropenia, pancytopenia, thrombocytopenic purpura, thrombotic thrombocytopenic purpura, pure red cell aplasia
  • Infections: Cases of progressive multifocal leukoencephalopathy (PML), sometimes fatal; polyoma virus-associated nephropathy, (PVAN) including graft loss
  • Metabolic/Nutritional: Glycosuria, increased amylase including pancreatitis, weight decreased
  • Miscellaneous: Feeling hot and cold, feeling jittery, hot flushes, multi-organ failure, primary graft dysfunction
  • Musculoskeletal and Connective Tissue Disorders: Pain in extremity including Calcineurin-Inhibitor Induced Pain Syndrome (CIPS)
  • Nervous System: Carpal tunnel syndrome, cerebral infarction, hemiparesis, leukoencephalopathy, mental disorder, mutism, posterior reversible encephalopathy syndrome (PRES), progressive multifocal leukoencephalopathy (PML), quadriplegia, speech disorder, syncope
  • Respiratory: Acute respiratory distress syndrome, interstitial lung disease, lung infiltration, respiratory distress, respiratory failure
  • Skin: Stevens-Johnson syndrome, toxic epidermal necrolysis
  • Special Senses: Blindness, optic neuropathy, blindness cortical, hearing loss including deafness, photophobia
  • Urogenital: Acute renal failure, cystitis hemorrhagic, hemolytic-uremic syndrome
  • Postmarketing Adverse Reactions in Lung Transplantation
    Based on U.S. Scientific Registry of Transplant Recipients (SRTR) data, published clinical trials, and postmarketing reports, the safety profile for lung transplant patients treated with tacrolimus is consistent with the safety profile in kidney, liver, and heart transplant patients treated with tacrolimus. The primary adverse reactions described include renal dysfunction, infection, diabetes, gastrointestinal disturbances (e.g., diarrhea), hypertension, and neurological events (e.g., tremor). As expected, lung transplant patients have a higher incidence of pulmonary complications (e.g., pneumonia, bronchiolitis obliterans syndrome) than other solid organ transplant patients, which is in part due to the underlying disease and to the nature of the transplanted organ.


7.1 Mycophenolic Acid



When tacrolimus capsules are prescribed with a given dose of a mycophenolic acid (MPA) product, exposure to MPA is higher with tacrolimus co-administration than with cyclosporine co-administration with MPA, because cyclosporine interrupts the enterohepatic recirculation of MPA while tacrolimus does not. Monitor for MPA-associated adverse reactions and reduce the dose of concomitantly administered mycophenolic acid products as needed.


7.2 Effects Of Other Drugs On Tacrolimus



Table 15 displays the effects of other drugs on tacrolimus.

Table 15: Effects of Other Drugs/Substances on Tacrolimus 1

  • Tacrolimus dosage adjustment recommendation based on observed effect of coadministered drug on tacrolimus exposures [see Clinical Pharmacology (12.3)] , literature reports of altered tacrolimus exposures, or the other drug’s known CYP3A inhibitor/inducer status.
  • High dose or double strength grapefruit juice is a strong CYP3A inhibitor; low dose or single strength grapefruit juice is a moderate CYP3A inhibitor.
  • Strong CYP3A inhibitor/inducer, based on reported effect on exposures to tacrolimus along with supporting in vitro CYP3A inhibitor/inducer data, or based on drug-drug interaction studies with midazolam (sensitive CYP3A probe substrate).

Drug/Substance Class or Name

Drug Interaction Effect

Recommendations

Grapefruit or grapefruit juice 2

May increase tacrolimus whole blood trough concentrations and increase the risk of serious adverse reactions (e.g., neurotoxicity, QT prolongation) [see Warnings and Precautions (5.6, 5.11, 5.12)] .

Avoid grapefruit or grapefruit juice.

Strong CYP3A Inducers 3

     Antimycobacterials (e.g., rifampin, rifabutin), anticonvulsants (e.g., phenytoin, carbamazepine and phenobarbital), St John’s Wort

May decrease tacrolimus whole blood trough concentrations and increase the risk of rejection [see Warnings and Precautions (5.11)] .

Increase tacrolimus dose and monitor tacrolimus whole blood trough concentrations [see Dosage and Administration (2.2, 2.6) and Clinical Pharmacology (12.3)] .

Strong CYP3A Inhibitors 3:

     Protease inhibitors (e.g., nelfinavir, telaprevir, boceprevir, ritonavir), azole antifungals (e.g., voriconazole, posaconazole, itraconazole, ketoconazole), antibiotics (e.g., clarithromycin, troleandomycin, chloramphenicol), nefazodone, letermovir, Schisandra sphenanthera extracts

May increase tacrolimus whole blood trough concentrations and increase the risk of serious adverse reactions (e.g., neurotoxicity, QT prolongation). A rapid, sharp rise in tacrolimus levels may occur early, despite an immediate reduction of tacrolimus dose [see Warnings and Precautions (5.6, 5.11, 5.12)] .

Reduce tacrolimus dose (for voriconazole and posaconazole, give one-third of the original dose) and adjust dose based on tacrolimus whole blood trough concentrations [see Dosage and Administration (2.2, 2.6) and Clinical Pharmacology (12.3)] .

Early and frequent monitoring of tacrolimus whole blood trough levels should start within 1 to 3 days and continue monitoring as necessary [see Warnings and Precautions (5.11)] .

Mild or Moderate CYP3A Inhibitors:

     Clotrimazole, antibiotics (e.g., erythromycin, fluconazole), calcium channel blockers (e.g., verapamil, diltiazem, nifedipine, nicardipine), amiodarone, danazol, ethinyl estradiol, cimetidine, lansoprazole and omeprazole

May increase tacrolimus whole blood trough concentrations and increase the risk of serious adverse reactions (e.g., neurotoxicity, QT prolongation) [see Warnings and Precautions (5.6, 5.11, 5.12)] .

Monitor tacrolimus whole blood trough concentrations and reduce tacrolimus dose if needed [see Dosage and Administration (2.2, 2.6) and Clinical Pharmacology (12.3)] .

Other drugs, such as:

     Magnesium and aluminum hydroxide antacids

     Metoclopramide

May increase tacrolimus whole blood trough concentrations and increase the risk of serious adverse reactions (e.g., neurotoxicity, QT prolongation) [see Warnings and Precautions (5.6, 5.11, 5.12)] .

Monitor tacrolimus whole blood trough concentrations and reduce tacrolimus dose if needed [see Dosage and Administration (2.2, 2.6) and Clinical Pharmacology (12.3)] .

Mild or Moderate CYP3A Inducers

     Methylprednisolone, prednisone

May decrease tacrolimus concentrations.

Monitor tacrolimus whole blood trough concentrations and adjust tacrolimus dose if needed [see Dosage and Administration (2.2, 2.6)] .

Direct Acting Antiviral (DAA) Therapy

The pharmacokinetics of tacrolimus may be impacted by changes in liver function during DAA therapy, related to clearance of HCV virus. Close monitoring and potential dose adjustment of tacrolimus is warranted to ensure continued efficacy and safety [see Dosage and Administration (2.2, 2.6)] .


Maternal Adverse Reactions



Tacrolimus may increase hyperglycemia in pregnant women with diabetes (including gestational diabetes). Monitor maternal blood glucose levels regularly [see Warnings and Precautions (5.4)] .

Tacrolimus may exacerbate hypertension in pregnant women and increase pre-eclampsia. Monitor and control blood pressure [see Warnings and Precautions (5.7, 5.8)].


Fetal/Neonatal Adverse Reactions



Renal dysfunction, transient neonatal hyperkalemia and low birth weight have been reported at the time of delivery in infants of mothers taking tacrolimus.


Labor Or Delivery



There is an increased risk for premature delivery (< 37 weeks) following transplantation and maternal exposure to tacrolimus.


Human Data



There are no adequate and well controlled studies on the effects of tacrolimus in human pregnancy.

Safety data from the TPRI and postmarketing surveillance suggest infants exposed to tacrolimus in utero have an increased risk for miscarriage, pre-term delivery (< 37 weeks), low birth weight (< 2500 g), birth defects/congenital anomalies and fetal distress. TPRI reported 450 and 241 total pregnancies in kidney and liver transplant recipients exposed to tacrolimus, respectively. The TPRI pregnancy outcomes are summarized in Table 16. In the table below, the number of recipients exposed to tacrolimus concomitantly with mycophenolic acid (MPA) products during the preconception and first trimester periods is high (27% and 29% for renal and liver transplant recipients, respectively). Because MPA products may also cause birth defects, the birth defect rate may be confounded and this should be taken into consideration when reviewing the data, particularly for birth defects. Birth defects observed include cardiac malformations, craniofacial malformations, renal/urogenital disorders, skeletal abnormalities, neurological abnormalities and multiple malformations.

Table 16. TPRI Reported Pregnancy Outcomes in Transplant Recipients with Exposure to Tacrolimus
  • Includes multiple births and terminations.
  • Birth defect rate confounded by concomitant MPA products exposure in over half of offspring with birth defects.

Kidney

Liver

Pregnancy Outcomes 1

462

253

   Miscarriage

24.5%

25%

   Live births

331

180

      Pre-term delivery (< 37 weeks)

49%

42%

      Low birth weight (< 2500 g)

42%

30%

      Birth defects

8% 2

5%

Additional information reported by TPRI in pregnant transplant patients receiving tacrolimus included diabetes during pregnancy in 9% of kidney recipients and 13% of liver recipients, and hypertension during pregnancy in 53% of kidney recipients and 16.2% of liver recipients.


Animal Data



Administration of oral tacrolimus to pregnant rabbits throughout organogenesis produced maternal toxicity and abortion at 0.32 mg/kg (0.5 to 1.4 times the recommended clinical dose range [0.2 to 0.075 mg/kg/day], on a mg/m 2 basis). At 1 mg/kg (1.6 to 4.3 times the recommended clinical dose range), embryofetal lethality and fetal malformations (ventricular hypoplasia, interventricular septal defect, bulbous aortic arch, stenosis of ductus arteriosus, omphalocele, gallbladder agenesis, skeletal anomalies) were observed. Administration of 3.2 mg/kg oral tacrolimus (2.6 to 6.9 times the recommended clinical dose range) to pregnant rats throughout organogenesis produced maternal toxicity/lethality, embryofetal lethality and decreased fetal body weight in the offspring of C-sectioned dams; and decreased pup viability and interventricular septal defect in offspring of dams that delivered.

In a peri-/postnatal development study, oral administration of tacrolimus to pregnant rats during late gestation (after organogenesis) and throughout lactation produced maternal toxicity, effects on parturition, and reduced pup viability at 3.2 mg/kg (2.6 to 6.9 times the recommended clinical dose range); among these pups that died early, an increased incidence of kidney hydronephrosis was observed. Reduced pup weight was observed at 1.0 mg/kg (0.8 to 2.2 times the recommended clinical dose range).

Administration of oral tacrolimus to rats prior to mating, and throughout gestation and lactation, produced maternal toxicity/lethality, embryofetal loss and reduced pup viability at 3.2 mg/kg (2.6 to 6.9 times the recommended clinical dose range). Interventricular septal defects, hydronephrosis, craniofacial malformations and skeletal effects were observed in offspring that died. Effects on parturition (incomplete delivery of nonviable pups) were observed at 1 mg/kg (0.8 to 2.2 times the recommended clinical dose range) [see Nonclinical Toxicology (13.1)] .


Risk Summary



Controlled lactation studies have not been conducted in humans; however, tacrolimus has been reported to be present in human milk. The effects of tacrolimus on the breastfed infant, or on milk production have not been assessed. Tacrolimus is excreted in rat milk and in peri-/postnatal rat studies; exposure to tacrolimus during the postnatal period was associated with developmental toxicity in the offspring at clinically relevant doses [see Use in Specific Populations (8.1) and Nonclinical Toxicology (13.1)] .

The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for tacrolimus and any potential adverse effects on the breastfed child from tacrolimus or from the underlying maternal condition.


Contraception



Tacrolimus can cause fetal harm when administered to pregnant women. Advise female and male patients of reproductive potential to speak to their healthcare provider on family planning options including appropriate contraception prior to starting treatment with tacrolimus [see Use in Specific Populations (8.1) and Nonclinical Toxicology (13.1)] .


Infertility



Based on findings in animals, male and female fertility may be compromised by treatment with tacrolimus [see Nonclinical Toxicology (13.1)] .


8.4 Pediatric Use



Safety and effectiveness have been established in pediatric liver and lung transplant patients.

Safety and effectiveness have been established in pediatric liver and lung transplant patients.


Liver Transplantation



Safety and efficacy in pediatric liver transplant patients less than 16 years of age are based on evidence from active controlled studies that included 56 pediatric patients, 31 of which received tacrolimus. Additionally, 122 pediatric patients were studied in an uncontrolled trial of tacrolimus in living related donor liver transplantation. Pediatric patients generally required higher doses of tacrolimus to maintain blood trough concentrations of tacrolimus similar to adult patients [see Dosage and Administration (2.3), Adverse Reactions (6.1), Clinical Pharmacology (12.3) and Clinical Studies (14.2)] .


Lung Transplantation



The use of tacrolimus capsules in pediatric lung transplantation is supported by the experience in the U.S. Scientific Registry of Transplant Recipients (SRTR) including 450 pediatric patients receiving tacrolimus immediate-release products in combination with mycophenolate mofetil and 72 pediatric patients receiving tacrolimus immediate-release products in combination with azathioprine between 1999 to 2017.

Additional pediatric use information is approved for Astellas Pharma US, Inc.’s Prograf (tacrolimus) products. However, due to Astellas Pharma US, Inc.’s marketing exclusivity rights, this drug product is not labeled with that information.


8.5 Geriatric Use



Clinical trials of tacrolimus did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.


8.6 Renal Impairment



The pharmacokinetics of tacrolimus in patients with renal impairment was similar to that in healthy volunteers with normal renal function. However, consideration should be given to dosing tacrolimus at the lower end of the therapeutic dosing range in patients who have received a liver or heart transplant and have pre-existing renal impairment. Further reductions in dose below the targeted range may be required [see Dosage and Administration (2.4) and Clinical Pharmacology (12.3)] .


8.7 Hepatic Impairment



The mean clearance of tacrolimus was substantially lower in patients with severe hepatic impairment (mean Child-Pugh score: > 10) compared to healthy volunteers with normal hepatic function. Close monitoring of tacrolimus trough concentrations is warranted in patients with hepatic impairment [see Clinical Pharmacology (12.3)] .

The use of tacrolimus in liver transplant recipients experiencing post-transplant hepatic impairment may be associated with increased risk of developing renal insufficiency related to high whole blood trough concentrations of tacrolimus. These patients should be monitored closely and dosage adjustments should be considered. Some evidence suggests that lower doses should be used in these patients [see Dosage and Administration (2.5) and Clinical Pharmacology (12.3)].


8.8 Race Or Ethnicity



African-American patients may need to be titrated to higher dosages to attain comparable trough concentrations compared to Caucasian patients [see Dosage and Administration (2.2) and Clinical Pharmacology (12.3)] .

African-American and Hispanic patients are at increased risk for new onset diabetes after transplant. Monitor blood glucose concentrations and treat appropriately [see Warnings and Precautions (5.4)].


10 Overdosage



Limited overdosage experience is available. Acute overdosages of up to 30 times the intended dose have been reported. Almost all cases have been asymptomatic and all patients recovered with no sequelae. Acute overdosage was sometimes followed by adverse reactions consistent with those inreported with the use of tacrolimus [see Adverse Reactions (6.1, 6.2)], (including tremors, abnormal renal function, hypertension, and peripheral edema); in one case of acute overdosage, transient urticaria and lethargy were observed. Based on the poor aqueous solubility and extensive erythrocyte and plasma protein binding, it is anticipated that tacrolimus is not dialyzable to any significant extent; there is no experience with charcoal hemoperfusion. The oral use of activated charcoal has been reported in treating acute overdoses, but experience has not been sufficient to warrant recommending its use. General supportive measures and treatment of specific symptoms should be followed in all cases of overdosage.


11 Description



Tacrolimus, previously known as FK506, is the active ingredient in tacrolimus capsules. Tacrolimus is a calcineurin-inhibitor immunosuppressant produced by Streptomyces tsukubaensis. Chemically, tacrolimus is designated as [3 S–[3 R*[ E(1 S*,3 S*,4 S*)],4 S*,5 R*,8 S*,9 E,12 R*,14 R*,15 S*,16 R*,18 S*,19 S*,26a R*]]–5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a–hexadecahydro–5,19–dihydroxy–3–[2–(4–hydroxy–3–methoxycyclo–hexyl)–1–methylethenyl]–14,16–dimethoxy–4,10,12,18–tetramethyl–8–(2–propenyl)–15,19–epoxy–3H–pyrido[2,1– c][1,4]oxaazacyclotricosine–1,7,20,21(4H,23H)–tetrone,monohydrate.

The chemical structure of tacrolimus is:

Tacrolimus has an empirical formula of C 44H 69NO 12•H 2O and a formula weight of 822.03. Tacrolimus appears as white crystals or crystalline powder. It is practically insoluble in water, freely soluble in ethanol, and very soluble in methanol and chloroform.

Tacrolimus capsules, USP are available for oral administration containing 0.5 mg, 1 mg or 5 mg of tacrolimus. Inactive ingredients include lactose monohydrate, hypromellose E5, croscarmellose sodium, and magnesium stearate.

The 0.5 mg capsule shell contains gelatin, titanium dioxide, iron oxide yellow and sodium lauryl sulfate, the 1 mg capsule shell contains gelatin, titanium dioxide and sodium lauryl sulfate, and the 5 mg capsule shell contains gelatin, titanium dioxide, iron oxide red and sodium lauryl sulfate.


12.1 Mechanism Of Action



Tacrolimus binds to an intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12, calcium, calmodulin, and calcineurin (a ubiquitous mammalian intracellular enzyme) is then formed, after which the phosphatase activity of calcineurin is inhibited. Such inhibition prevents the dephosphorylation and translocation of various factors such as the nuclear factor of activated T-cells (NF-AT), and nuclear factor kappa-light-chain enhancer of activated B-cells (NF-κB).

Tacrolimus inhibits the expression and/or production of several cytokines that include interleukin (IL)-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, gamma interferon, tumor necrosis factor-alpha, and granulocyte macrophage colony stimulating factor. Tacrolimus also inhibits IL-2 receptor expression and nitric oxide release, induces apoptosis and production of transforming growth factor beta that can lead to immunosuppressive activity. The net result is the inhibition of T-lymphocyte activation and proliferation, as well as T-helper-cell-dependent B-cell response (i.e., immunosuppression).


12.3 Pharmacokinetics



Tacrolimus activity is primarily due to the parent drug. The pharmacokinetic parameters (mean ± S.D.) of tacrolimus have been determined following intravenous (IV) and/or oral (PO) administration in healthy volunteers, and in kidney transplant, liver transplant, and heart transplant patients (Table 17).

Table 17. Pharmacokinetics Parameters (mean ± S.D.) of Tacrolimus in Healthy Volunteers and Patients
  • Not applicable
  • AUC 0-inf
  • Not available
  • AUC 0-t
  • Determined after the first dose
  • Median [range]
  • AUC 0-12

Population

N

Route
(Dose)

Parameters

C max
(ng/mL)

T max

(hr)

AUC
(ng•hr/mL)

t 1/2
(hr)

CL
(L/hr/kg)

V
(L/kg)

Healthy Volunteers

8

IV (0.025 mg/kg/4hr)

1

1

652 2 ± 156

34.2 ± 7.7

0.040 ± 0.009

1.91 ± 0.31

16

PO (5 mg) (capsules)

28.8 ± 8.9

1.5 ± 0.7

266 2 ± 95

32.3 ± 8.8

3

3

IV (0.02 mg/kg/12 hr)

1

1

294 2 ± 262

18.8 ± 16.7

0.083 ± 0.050

1.41 ± 0.66

Kidney Transplant Patients

26

PO (0.2 mg/kg/day)

19.2 ± 10.3

3.0

203 2 ± 42

3

3

3

PO (0.3 mg/kg/day)

24.2 ± 15.8

1.5

288 2 ± 93

3

3

3

Liver Transplant Patients

17

IV (0.05 mg/kg/12 hr)

1

1

3300 2± 2130

11.7 ± 3.9

0.053 ± 0.017

0.85 ± 0.30

PO (0.3 mg/kg/day)

68.5 ± 30.0

2.3 ± 1.5

519 2 ± 179

3

3

3

11

IV (0.01 mg/kg/day as a continuous infusion)

1

1

954 4 ± 334

23.6 ± 9.22

0.051 ± 0.015

3

Heart Transplant Patients

11

PO (0.075 g/kg/day) 5

14.7 ± 7.79

2.1
[0.5 to 6.0] 6

82.7 7 ± 63.2

1

3

3

14

PO (0.15 mg/kg/day) 5

24.5 ± 13.7

1.5
[0.4 to 4.0] 6

142 7 ± 116

1

3

3

Due to intersubject variability in tacrolimus pharmacokinetics, individualization of the dosing regimen is necessary for optimal therapy [see Dosage and Administration (2.6)] . Pharmacokinetic data indicate that whole blood concentrations rather than plasma concentrations serve as the more appropriate sampling compartment to describe tacrolimus pharmacokinetics.


Absorption



Absorption of tacrolimus from the gastrointestinal tract after oral administration is incomplete and variable. The absolute bioavailability of tacrolimus was 17 ± 10% in adult kidney transplant patients (N = 26), 22 ± 6% in adult liver transplant patients (N = 17), 23 ± 9% in adult heart transplant patients (N = 11) and 18 ± 5% in healthy volunteers (N = 16).

A single dose trial conducted in 32 healthy volunteers established the bioequivalence of the 1 mg and 5 mg capsules. Another single dose trial in 32 healthy volunteers established the bioequivalence of the 0.5 mg and 1 mg capsules.

Tacrolimus maximum blood concentrations (C max) and area under the curve (AUC) appeared to increase in a dose-proportional fashion in 18 fasted healthy volunteers receiving a single oral dose of 3, 7, and 10 mg.

In 18 kidney transplant patients, tacrolimus trough concentrations from 3 to 30 ng/mL measured at 10 to 12 hours post-dose (C min) correlated well with the AUC (correlation coefficient 0.93). In 24 liver transplant patients over a concentration range of 10 to 60 ng/mL, the correlation coefficient was 0.94. In 25 heart transplant patients over a concentration range of 2 to 24 ng/mL, the correlation coefficient was 0.89 after an oral dose of 0.075 or 0.15 mg/kg/day at steady-state.

If pediatric patients are converted between formulations, therapeutic drug monitoring must be performed and dose adjustments made to ensure that systemic exposure to tacrolimus is maintained.


Food Effects



The rate and extent of tacrolimus absorption were greatest under fasted conditions. The presence and composition of food decreased both the rate and extent of tacrolimus absorption when administered to 15 healthy volunteers.

The effect was most pronounced with a high-fat meal (848 kcal, 46% fat): mean AUC and C max were decreased 37% and 77%, respectively; T max was lengthened 5-fold. A high-carbohydrate meal (668 kcal, 85% carbohydrate) decreased mean AUC and mean C max by 28% and 65%, respectively.

In healthy volunteers (N = 16), the time of the meal also affected tacrolimus bioavailability. When given immediately following the meal, mean C max was reduced 71%, and mean AUC was reduced 39%, relative to the fasted condition. When administered 1.5 hours following the meal, mean C max was reduced 63%, and mean AUC was reduced 39%, relative to the fasted condition.

In 11 liver transplant patients, tacrolimus administered 15 minutes after a high fat (400 kcal, 34% fat) breakfast, resulted in decreased AUC (27 ± 18%) and C max (50 ± 19%), as compared to a fasted state.

Tacrolimus capsules should be taken consistently every day either with or without food because the presence and composition of food decreases the bioavailability of tacrolimus [see Dosage and Administration (2.1)] .


Distribution



The plasma protein binding of tacrolimus is approximately 99% and is independent of concentration over a range of 5 to 50 ng/mL. Tacrolimus is bound mainly to albumin and alpha-1-acid glycoprotein, and has a high level of association with erythrocytes. The distribution of tacrolimus between whole blood and plasma depends on several factors, such as hematocrit, temperature at the time of plasma separation, drug concentration, and plasma protein concentration. In a U.S. trial, the ratio of whole blood concentration to plasma concentration averaged 35 (range 12 to 67).


Metabolism



Tacrolimus is extensively metabolized by the mixed-function oxidase system, primarily the cytochrome P-450 system (CYP3A). A metabolic pathway leading to the formation of 8 possible metabolites has been proposed. Demethylation and hydroxylation were identified as the primary mechanisms of biotransformation in vitro. The major metabolite identified in incubations with human liver microsomes is 13-demethyl tacrolimus. In in vitro studies, a 31-demethyl metabolite has been reported to have the same activity as tacrolimus.


Excretion



The mean clearance following IV administration of tacrolimus is 0.040, 0.083, 0.053, and 0.051 L/hr/kg in healthy volunteers, adult kidney transplant patients, adult liver transplant patients, and adult heart transplant patients, respectively. In man, less than 1% of the dose administered is excreted unchanged in urine.

In a mass balance study of IV-administered radiolabeled tacrolimus to 6 healthy volunteers, the mean recovery of radiolabel was 77.8 ± 12.7%. Fecal elimination accounted for 92.4 ± 1.0% and the elimination half-life based on radioactivity was 48.1 ± 15.9 hours whereas it was 43.5 ± 11.6 hours based on tacrolimus concentrations. The mean clearance of radiolabel was 0.029 ± 0.015 L/hr/kg and clearance of tacrolimus was 0.029 ± 0.009 L/hr/kg. When administered PO, the mean recovery of the radiolabel was 94.9 ± 30.7%. Fecal elimination accounted for 92.6 ± 30.7%, urinary elimination accounted for 2.3 ± 1.1% and the elimination half-life based on radioactivity was 31.9 ± 10.5 hours whereas it was 48.4 ± 12.3 hours based on tacrolimus concentrations. The mean clearance of radiolabel was 0.226 ± 0.116 L/hr/kg and clearance of tacrolimus was 0.172 ± 0.088 L/hr/kg.


Patients With Renal Impairment



Tacrolimus pharmacokinetics, following a single IV administration, were determined in 12 patients (7 not on dialysis and 5 on dialysis, serum creatinine of 3.9 ± 1.6 and 12.0 ± 2.4 mg/dL, respectively) prior to their kidney transplant. The pharmacokinetic parameters obtained were similar for both groups. The mean clearance of tacrolimus in patients with renal dysfunction was similar to that in normal volunteers (Table 19) [see Dosage and Administration (2.2) and Use in Specific Populations (8.6)] .


Patients With Hepatic Impairment



Tacrolimus pharmacokinetics have been determined in six patients with mild hepatic dysfunction (mean Pugh score: 6.2) following oral administrations. The mean clearance of tacrolimus in patients with mild hepatic dysfunction was not substantially different from that in normal volunteers (see previous table). Tacrolimus pharmacokinetics were studied in 6 patients with severe hepatic dysfunction (mean Pugh score: > 10). The mean clearance was substantially lower in patients with severe hepatic dysfunction, irrespective of the route of administration [see Dosage and Administration (2.5) and Use in Specific Populations (8.7)] .


Patients With Cystic Fibrosis



Lower bioavailability of tacrolimus has been reported in patients with cystic fibrosis [see Dosage and Administration (2.2, 2.3)].

Mean AUC 0-inf tended to be lower in African-Americans (203 ± 115 ng•hr/mL) than Caucasians (344 ± 186 ng•hr/mL) and Latino-Americans (274 ± 150 ng•hr/mL). The mean (± SD) absolute oral bioavailability (F) in African-Americans (12 ± 4.5%) and Latino-Americans (14 ± 7.4%) was significantly lower than in Caucasians (19 ± 5.8%, p = 0.011). There was no significant difference in mean terminal T 1/2 among the three ethnic groups (range from approximately 25 to 30 hours). A retrospective comparison of African-American and Caucasian kidney transplant patients indicated that African-American patients required higher tacrolimus doses to attain similar trough concentrations [see Dosage and Administration (2.2)].


Racial Or Ethnic Groups



The pharmacokinetics of tacrolimus have been studied following single IV and oral administration of tacrolimus to 10 African-American, 12 Latino-American, and 12 Caucasian healthy volunteers. There were no significant pharmacokinetic differences among the three ethnic groups following a 4-hour IV infusion of 0.015 mg/kg. However, after single oral administration of 5 mg, mean (± SD) tacrolimus C max in African-Americans (23.6 ± 12.1 ng/mL) was significantly lower than in Caucasians (40.2 ± 12.6 ng/mL) and the Latino-Americans (36.2 ± 15.8 ng/mL) (p < 0.01).

Mean AUC 0-inf tended to be lower in African-Americans (203 ± 115 ng•hr/mL) than Caucasians (344 ± 186 ng•hr/mL) and Latino-Americans (274 ± 150 ng•hr/mL). The mean (± SD) absolute oral bioavailability (F) in African-Americans (12 ± 4.5%) and Latino-Americans (14 ± 7.4%) was significantly lower than in Caucasians (19 ± 5.8%, p = 0.011). There was no significant difference in mean terminal T 1/2 among the three ethnic groups (range from approximately 25 to 30 hours). A retrospective comparison of African-American and Caucasian kidney transplant patients indicated that African-American patients required higher tacrolimus doses to attain similar trough concentrations [see Dosage and Administration (2.2)].


Male And Female Patients



A formal trial to evaluate the effect of gender on tacrolimus pharmacokinetics has not been conducted, however, there was no difference in dosing by gender in the kidney transplant trial. A retrospective comparison of pharmacokinetics in healthy volunteers, and in kidney, liver, and heart transplant patients indicated no gender-based differences.


Drug Interaction Studies



Frequent monitoring of whole blood concentrations and appropriate dosage adjustments of tacrolimus are recommended when concomitant use of the following drugs with tacrolimus is initiated or discontinued [see Drug Interactions (7)] .

  • Telaprevir: In a single-dose study in 9 healthy volunteers, co-administration of tacrolimus (0.5 mg single dose) with telaprevir (750 mg three times daily for 13 days) increased the tacrolimus dose-normalized C max by 9.3-fold and AUC by 70-fold compared to tacrolimus alone [see Drug Interactions (7.2)] .
  • Boceprevir: In a single-dose study in 12 subjects, co-administration of tacrolimus (0.5 mg single dose) with boceprevir (800 mg three times daily for 11 days) increased tacrolimus C max by 9.9-fold and AUC by 17-fold compared to tacrolimus alone [see Drug Interactions (7.2)] .
  • Nelfinavir: Based on a clinical study of 5 liver transplant recipients, co-administration of tacrolimus with nelfinavir increased blood concentrations of tacrolimus significantly and, as a result, a reduction in the tacrolimus dose by an average of 16-fold was needed to maintain mean trough tacrolimus blood concentrations of 9.7 ng/mL. It is recommended to avoid concomitant use of tacrolimus and nelfinavir unless the benefits outweigh the risks [see Drug Interactions (7.2)] .
  • Rifampin: In a study of 6 normal volunteers, a significant decrease in tacrolimus oral bioavailability (14 ± 6% vs. 7 ± 3%) was observed with concomitant rifampin administration (600 mg). In addition, there was a significant increase in tacrolimus clearance (0.036 ± 0.008 L/hr/kg vs. 0.053 ± 0.010 L/hr/kg) with concomitant rifampin administration [see Drug Interactions (7.2)] .
  • Magnesium and Aluminum-hydroxide: In a single-dose crossover study in healthy volunteers, co-administration of tacrolimus and magnesium-aluminum-hydroxide resulted in a 21% increase in the mean tacrolimus AUC and a 10% decrease in the mean tacrolimus C max relative to tacrolimus administration alone [see Drug Interactions (7.2)].
  • Ketoconazole: In a study of 6 normal volunteers, a significant increase in tacrolimus oral bioavailability (14 ± 5% vs. 30 ± 8%) was observed with concomitant ketoconazole administration (200 mg). The apparent oral clearance of tacrolimus during ketoconazole administration was significantly decreased compared to tacrolimus alone (0.430 ± 0.129 L/hr/kg vs. 0.148 ± 0.043 L/hr/kg). Overall, IV clearance of tacrolimus was not significantly changed by ketoconazole co-administration, although it was highly variable between patients [see Drug Interactions (7.2)] .
  • Voriconazole (see complete prescribing information for VFEND): Repeat oral dose administration of voriconazole (400 mg every 12 hours for one day, then 200 mg every 12 hours for 6 days) increased tacrolimus (0.1 mg/kg single dose) C max and AUC τ in healthy subjects by an average of 2-fold (90% CI: 1.9, 2.5) and 3-fold (90% CI: 2.7, 3.8), respectively [see Drug Interactions (7.2)] .
  • Posaconazole (see complete prescribing information for Noxafil): Repeat oral administration of posaconazole (400 mg twice daily for 7 days) increased tacrolimus (0.05 mg/kg single dose) C max and AUC in healthy subjects by an average of 2-fold (90% CI: 2.01, 2.42) and 4.5-fold (90% CI 4.03, 5.19), respectively [see Drug Interactions (7.2)] .
  • Caspofungin (see complete prescribing information for CANCIDAS): Caspofungin reduced the blood AUC 0-12 of tacrolimus by approximately 20%, peak blood concentration (C max) by 16%, and 12-hour blood concentration (C 12hr) by 26% in healthy adult subjects when tacrolimus (2 doses of 0.1 mg/kg 12 hours apart) was administered on the 10th day of CANCIDAS 70 mg daily, as compared to results from a control period in which tacrolimus was administered alone [see Drug Interactions (7.2)] .
  • Additional pediatric use information is approved for Astellas Pharma US, Inc.’s Prograf (tacrolimus) products. However, due to Astellas Pharma US, Inc.’s marketing exclusivity rights, this drug product is not labeled with that information.


Carcinogenesis



Carcinogenicity studies were conducted in male and female rats and mice. In the 80-week mouse oral study and in the 104-week rat oral study, no relationship of tumor incidence to tacrolimus dosage was found. The highest dose used in the mouse was 3.0 mg/kg/day (0.9 to 2.2 times the AUC at clinical doses of 0.075 to 0.2 mg/kg/day) and in the rat was 5.0 mg/kg/day (0.265 to 0.65 times the AUC at clinical doses of 0.075 to 0.2 mg/kg/day) [see Warnings and Precautions (5.1)] .

A 104-week dermal carcinogenicity study was performed in mice with tacrolimus ointment (0.03% to 3%), equivalent to tacrolimus doses of 1.1 to 118 mg/kg/day or 3.3 to 354 mg/m 2/day. In the study, the incidence of skin tumors was minimal and the topical application of tacrolimus was not associated with skin tumor formation under ambient room lighting. However, a statistically significant elevation in the incidence of pleomorphic lymphoma in high-dose male (25/50) and female animals (27/50) and in the incidence of undifferentiated lymphoma in high-dose female animals (13/50) was noted in the mouse dermal carcinogenicity study. Lymphomas were noted in the mouse dermal carcinogenicity study at a daily dose of 3.5 mg/kg (0.1% tacrolimus ointment). No drug-related tumors were noted in the mouse dermal carcinogenicity study at a daily dose of 1.1 mg/kg (0.03% tacrolimus ointment). The relevance of topical administration of tacrolimus in the setting of systemic tacrolimus use is unknown.

The implications of these carcinogenicity studies to the human condition are limited; doses of tacrolimus were administered that likely induced immunosuppression in these animals, impairing their immune system’s ability to inhibit unrelated carcinogenesis.


Mutagenesis



No evidence of genotoxicity was seen in bacterial ( Salmonella and E. coli) or mammalian (Chinese hamster lung-derived cells) in vitro assays of mutagenicity, the in vitro CHO/HGPRT assay of mutagenicity, or in vivo clastogenicity assays performed in mice; tacrolimus did not cause unscheduled DNA synthesis in rodent hepatocytes.


Impairment Of Fertility



Tacrolimus, administered orally at 1.0 mg/kg (0.8 to 2.2 times the clinical dose range) to male and female rats, prior to and during mating, as well as to dams during gestation and lactation, was associated with embryolethality and adverse effects on female reproduction. Effects on female reproductive function (parturition) and embryolethal effects were indicated by a higher rate of pre- and post- implantation loss and increased numbers of undelivered and nonviable pups. When administered at 3.2 mg/kg (2.6 to 6.9 times the clinical dose range based on body surface area), tacrolimus was associated with maternal and paternal toxicity as well as reproductive toxicity including marked adverse effects on estrus cycles, parturition, pup viability, and pup malformations.


Tacrolimus/Azathioprine (Aza)



Tacrolimus-based immunosuppression in conjunction with azathioprine and corticosteroids following kidney transplantation was assessed in a randomized, multicenter, non-blinded, prospective trial. There were 412 kidney transplant patients enrolled at 19 clinical sites in the United States. Study therapy was initiated when renal function was stable as indicated by a serum creatinine ≤ 4 mg/dL (median of 4 days after transplantation, range 1 to 14 days). Patients less than 6 years of age were excluded.

There were 205 patients randomized to tacrolimus-based immunosuppression and 207 patients were randomized to cyclosporine-based immunosuppression. All patients received prophylactic induction therapy consisting of an antilymphocyte antibody preparation, corticosteroids, and azathioprine. Overall, 1-year patient and graft survivals were 96.1% and 89.6%, respectively.

Data from this trial of tacrolimus in conjunction with azathioprine indicate that during the first 3 months of that trial, 80% of the patients maintained trough concentrations between 7 to 20 ng/mL, and then between 5 to 15 ng/mL, through 1 year.


Tacrolimus/Mycophenolate Mofetil (Mmf)



Tacrolimus-based immunosuppression in conjunction with MMF, corticosteroids, and induction has been studied. In a randomized, open-label, multicenter trial (Study 1), 1589 kidney transplant patients received tacrolimus (Group C, n = 401), sirolimus (Group D, n = 399), or one of two cyclosporine (CsA) regimens (Group A, n = 390 and Group B, n = 399) in combination with MMF and corticosteroids; all patients, except those in one of the two cyclosporine groups, also received induction with daclizumab. The trial was conducted outside the United States; the trial population was 93% Caucasian. In this trial, mortality at 12 months in patients receiving tacrolimus/MMF was similar (3%) compared to patients receiving cyclosporine/MMF (3% and 2%) or sirolimus/MMF (3%). Patients in the tacrolimus group exhibited higher estimated creatinine clearance rates (eCLcr) using the Cockcroft-Gault formula (Table 20) and experienced fewer efficacy failures, defined as biopsy-proven acute rejection (BPAR), graft loss, death, and/or loss to follow-up (Table 21) in comparison to each of the other three groups. Patients randomized to tacrolimus/MMF were more likely to develop diarrhea and diabetes after the transplantation and experienced similar rates of infections compared to patients randomized to either cyclosporine/MMF regimen [see Adverse Reactions (6.1)].

Table 20. Estimated Creatinine Clearance at 12 Months (Study 1)
  • All death/graft loss (n = 41, 27, 23, and 42 in Groups A, B, C, and D) and patients whose last recorded creatinine values were prior to month 3 visit (n = 10, 9, 7, and 9 in Groups A, B, C, and D, respectively) were imputed with Glomerular Filtration Rate (GFR) of 10 mL/min; a subject's last observed creatinine value from month 3 on was used for the remainder of subjects with missing creatinine at month 12 (n = 11, 12, 15, and 19 for Groups A, B, C, and D, respectively). Weight was also imputed in the calculation of estimated GFR, if missing.
  • Adjusted for multiple (6) pairwise comparisons using Bonferroni corrections.

Group

eCL cr [mL/min] at Month 12 1

N

MEAN

SD

MEDIAN

Treatment Difference with Group C
(99.2% CI 2)

(A) CsA/MMF/CS

390

56.5

25.8

56.9

-8.6 (-13.7, -3.7)

(B) CsA/MMF/CS/Daclizumab

399

58.9

25.6

60.9

-6.2 (-11.2, -1.2)

(C) Tac/MMF/CS/Daclizumab

401

65.1

27.4

66.2

-

(D) Siro/MMF/CS/Daclizumab

399

56.2

27.4

57.3

-8.9 (-14.1, -3.9)

Total

1589

59.2

26.8

60.5

Key: CsA = Cyclosporine, CS = Corticosteroids, Tac = Tacrolimus, Siro = Sirolimus

Table 21. Incidence of BPAR, Graft Loss, Death, or Loss to Follow-up at 12 Months (Study 1)
  • Adjusted for multiple (6) pairwise comparisons using Bonferroni corrections.

Group A
N = 390

Group B
N = 399

Group C
N = 401

Group D
N = 399

Overall Failure

141 (36.2%)

126 (31.6%)

82 (20.4%)

185 (46.4%)

Components of efficacy failure

     BPAR

113 (29.0%)

106 (26.6%)

60 (15.0%)

152 (38.1%)

     Graft loss excluding death

28 (7.2%)

20 (5.0%)

12 (3.0%)

30 (7.5%)

     Mortality

13 (3.3%)

7 (1.8%)

11 (2.7%)

12 (3.0%)

     Lost to follow-up

5 (1.3%)

7 (1.8%)

5 (1.3%)

6 (1.5%)

Treatment Difference of efficacy failure compared to Group C (99.2% CI 1)

15.8%

(7.1%, 24.3%)

11.2%
(2.7%, 19.5%)

-

26.0%
(17.2%, 34.7%)

Key: Group A = CsA/MMF/CS, B = CsA/MMF/CS/Daclizumab, C = Tac/MMF/CS/Daclizumab, and D = Siro/MMF/CS/Daclizumab

The protocol-specified target tacrolimus trough concentrations (C trough, Tac) were 3 to 7 ng/mL; however, the observed median C troughs, Tac approximated 7 ng/mL throughout the 12-month trial (Table 22). Approximately 80% of patients maintained tacrolimus whole blood concentrations between 4 to 11 ng/mL through 1 year post-transplant.

Table 22. Tacrolimus Whole Blood Trough Concentration Range (Study 1)
  • 10 to 90 th Percentile: range of C trough,Tac that excludes lowest 10% and highest 10% of C trough,Tac

Time

Median (P10-P90 1)

Day 30 (N = 366)

6.9 (4.4 to 11.3)

Day 90 (N = 351)

6.8 (4.1 to 10.7)

Day 180 (N = 355)

6.5 (4.0 to 9.6)

Day 365 (N = 346)

6.5 (3.8 to 10.0)

The protocol-specified target cyclosporine trough concentrations (C trough, CsA) for Group B were 50 to 100 ng/mL; however, the observed median C troughs, CsA approximated 100 ng/mL throughout the 12-month trial. The protocol-specified target C troughs, CsA for Group A were 150 to 300 ng/mL for the first 3 months and 100 to 200 ng/mL from month 4 to month 12; the observed median C troughs, CsA approximated 225 ng/mL for the first 3 months and 140 ng/mL from month 4 to month 12.

While patients in all groups started MMF at 1 gram twice daily, the MMF dose was reduced to less than 2 g per day in 63% of patients in the tacrolimus treatment arm by month 12 (Table 23); approximately 50% of these MMF dose reductions were due to adverse reactions. By comparison, the MMF dose was reduced to less than 2 g per day in 49% and 45% of patients in the two cyclosporine arms (Group A and Group B, respectively), by month 12 and approximately 40% of MMF dose reductions were due to adverse reactions.

Table 23. MMF Dose Over Time in Tacrolimus/MMF (Group C) (Study 1)
  • Percentage of patients for each time-averaged MMF dose range during various treatment periods. Administration of 2 g per day of time-averaged MMF dose means that MMF dose was not reduced in those patients during the treatment periods.

Time period (Days)

Time-averaged MMF dose (grams per day) 1

Less than 2.0

2.0

Greater than 2.0

0 to 30 (N = 364)

37%

60%

2%

0 to 90 (N = 373)

47%

51%

2%

0 to 180 (N = 377)

56%

42%

2%

0 to 365 (N = 380)

63%

36%

1%

Key: Time-averaged MMF dose = (total MMF dose)/(duration of treatment)

In a second randomized, open-label, multicenter trial (Study 2), 424 kidney transplant patients received tacrolimus (N = 212) or cyclosporine (N = 212) in combination with MMF 1 gram twice daily, basiliximab induction, and corticosteroids. In this trial, the rate for the combined endpoint of BPAR, graft failure, death, and/or lost to follow-up at 12 months in the tacrolimus/MMF group was similar to the rate in the cyclosporine/MMF group. There was, however, an imbalance in mortality at 12 months in those patients receiving tacrolimus/MMF (4%) compared to those receiving cyclosporine/MMF (2%), including cases attributed to over-immunosuppression (Table 24).

Table 24. Incidence of BPAR, Graft Loss, Death, or Loss to Follow-up at 12 Months (Study 2)
  • 95% confidence interval calculated using Fisher's Exact Test.

Tacrolimus/MMF

Cyclosporine/MMF

(N = 212)

(N = 212)

Overall Failure

32 (15.1%)

36 (17.0%)

Components of efficacy failure

     BPAR

16 (7.5%)

29 (13.7%)

     Graft loss excluding death

6 (2.8%)

4 (1.9%)

     Mortality

9 (4.2%)

5 (2.4%)

     Lost to follow-up

4 (1.9%)

1 (0.5%)

Treatment Difference of efficacy failure compared to tacrolimus/MMF group (95% CI 1)

1.9% (-5.2%, 9.0%)

The protocol-specified target tacrolimus whole blood trough concentrations (C trough, Tac) in Study 2 were 7 to 16 ng/mL for the first three months and 5 to 15 ng/mL thereafter. The observed median C troughs, Tac approximated 10 ng/mL during the first three months and 8 ng/mL from month 4 to month 12 (Table 25). Approximately 80% of patients maintained tacrolimus whole blood trough concentrations between 6 to 16 ng/mL during months 1 through 3 and, then, between 5 to 12 ng/mL from month 4 through 1 year.

Table 25. Tacrolimus Whole Blood Trough Concentration Range (Study 2)
  • 10 to 90th Percentile: range of C trough,Tac that excludes lowest 10% and highest 10% of C trough,Tac

Time

Median (P10-P90 1) tacrolimus whole blood trough concentration range
(ng/mL)

Day 30 (N = 174)

10.5 (6.3 – 16.8)

Day 60 (N = 179)

9.2 (5.9 – 15.3)

Day 120 (N = 176)

8.3 (4.6 – 13.3)

Day 180 (N = 171)

7.8 (5.5 – 13.2)

Day 365 (N = 178)

7.1 (4.2 – 12.4)

The protocol-specified target cyclosporine whole blood concentrations (C trough, CsA) were 125 to 400 ng/mL for the first three months, and 100 to 300 ng/mL thereafter. The observed median C troughs, CsA approximated 280 ng/mL during the first three months and 190 ng/mL from month 4 to month 12.

Patients in both groups started MMF at 1 gram twice daily. The MMF dose was reduced to less than 2 grams per day by month 12 in 62% of patients in the tacrolimus/MMF group (Table 26) and in 47% of patients in the cyclosporine/MMF group. Approximately 63% and 55% of these MMF dose reductions were because of adverse reactions in the tacrolimus/MMF group and the cyclosporine/MMF group, respectively [see Adverse Reactions (6.1)].

Table 26. MMF Dose Over Time in the Tacrolimus/MMF Group (Study 2)
  • Percentage of patients for each time-averaged MMF dose range during various treatment periods. Two grams per day of time-averaged MMF dose means that MMF dose was not reduced in those patients during the treatment periods.

Time period (Days)

Time-averaged MMF dose (g/day) 1

Less than 2.0

2.0

Greater than 2.0

0-30 (N = 212)

25%

69%

6%

0-90 (N = 212)

41%

53%

6%

0-180 (N = 212)

52%

41%

7%

0-365 (N = 212)

62%

34%

4%

Key: Time-averaged MMF dose = (total MMF dose)/(duration of treatment)


14.2 Liver Transplantation



The safety and efficacy of tacrolimus-based immunosuppression following orthotopic liver transplantation were assessed in two prospective, randomized, non-blinded multicenter trials. The active control groups were treated with a cyclosporine-based immunosuppressive regimen (CsA/AZA). Both trials used concomitant adrenal corticosteroids as part of the immunosuppressive regimens. These trials compared patient and graft survival rates at 12 months following transplantation.

In one trial, 529 patients were enrolled at 12 clinical sites in the United States; prior to surgery, 263 were randomized to the tacrolimus-based immunosuppressive regimen and 266 to the CsA/AZA. In 10 of the 12 sites, the same CsA/AZA protocol was used, while 2 sites used different control protocols. This trial excluded patients with renal dysfunction, fulminant hepatic failure with Stage IV encephalopathy, and cancers; pediatric patients (≤ 12 years old) were allowed.

In the second trial, 545 patients were enrolled at 8 clinical sites in Europe; prior to surgery, 270 were randomized to the tacrolimus-based immunosuppressive regimen and 275 to CsA/AZA. In this trial, each center used its local standard CsA/AZA protocol in the active-control arm. This trial excluded pediatric patients, but did allow enrollment of subjects with renal dysfunction, fulminant hepatic failure in Stage IV encephalopathy, and cancers other than primary hepatic with metastases.

One-year patient survival and graft survival in the tacrolimus-based treatment groups were similar to those in the CsA/AZA treatment groups in both trials. The overall 1-year patient survival (CsA/AZA and tacrolimus-based treatment groups combined) was 88% in the U.S. trial and 78% in the European trial. The overall 1-year graft survival (CsA/AZA and tacrolimus-based treatment groups combined) was 81% in the U.S. trial and 73% in the European trial. In both trials, the median time to convert from IV to oral tacrolimus dosing was 2 days.

Although there is a lack of direct correlation between tacrolimus concentrations and drug efficacy, data from clinical trials of liver transplant patients have shown an increasing incidence of adverse reactions with increasing trough blood concentrations. Most patients are stable when trough whole blood concentrations are maintained between 5 to 20 ng/mL. Long-term post-transplant patients are often maintained at the low end of this target range.

Data from the U.S. clinical trial show that the median trough blood concentrations, measured at intervals from the second week to one year post-transplantation, ranged from 9.8 ng/mL to 19.4 ng/mL.

Additional pediatric use information is approved for Astellas Pharma US, Inc.’s Prograf (tacrolimus) products. However, due to Astellas Pharma US, Inc.’s marketing exclusivity rights, this drug product is not labeled with that information.


14.3 Heart Transplantation



Two open-label, randomized, comparative trials evaluated the safety and efficacy of tacrolimus-based and cyclosporine- based immunosuppression in primary orthotopic heart transplantation. In a trial conducted in Europe, 314 patients received a regimen of antibody induction, corticosteroids, and azathioprine in combination with tacrolimus or cyclosporine modified for 18 months. In a 3-arm trial conducted in the US, 331 patients received corticosteroids and tacrolimus plus sirolimus, tacrolimus plus mycophenolate mofetil (MMF) or cyclosporine modified plus MMF for 1 year.

In the European trial, patient/graft survival at 18 months post-transplant was similar between treatment arms, 92% in the tacrolimus group and 90% in the cyclosporine group. In the U.S. trial, patient and graft survival at 12 months was similar with 93% survival in the tacrolimus plus MMF group and 86% survival in the cyclosporine modified plus MMF group. In the European trial, the cyclosporine trough concentrations were above the pre-defined target range (i.e., 100 to 200 ng/mL) at Day 122 and beyond in 32% to 68% of the patients in the cyclosporine treatment arm, whereas the tacrolimus trough concentrations were within the pre-defined target range (i.e., 5 to 15 ng/mL) in 74% to 86% of the patients in the tacrolimus treatment arm. Data from this European trial indicate that from 1 week to 3 months post-transplant, approximately 80% of patients maintained trough concentrations between 8 to 20 ng/mL and, from 3 months through 18 months post-transplant, approximately 80% of patients maintained trough concentrations between 6 to 18 ng/mL.

The U.S. trial contained a third arm of a combination regimen of sirolimus, 2 mg per day, and full-dose tacrolimus; however, this regimen was associated with increased risk of wound-healing complications, renal function impairment, and insulin-dependent post-transplant diabetes mellitus, and is not recommended [see Warnings and Precautions (5.10)] .


14.4 Lung Transplantation



The efficacy and safety of tacrolimus-based immunosuppression in primary lung transplantation were assessed in a non-interventional (observational) study using data from the U.S. Scientific Registry of Transplant Recipients (SRTR). The study analyzed outcomes based on discharge immunosuppression treatment regimen in recipients of a primary lung transplant between 1999 and 2017 who were alive at the time of discharge. In adult patients receiving tacrolimus immediate-release products in combination with MMF (n=15,478) or tacrolimus immediate-release products in combination with AZA (n=4,263), the one-year graft survival estimates from time of discharge were 90.9% and 90.8%, respectively. In pediatric patients receiving tacrolimus immediate-release products in combination with MMF (n=450) or tacrolimus immediate-release products in combination with AZA (n=72), the one-year graft survival estimates from time of discharge were 91.7% and 84.7%, respectively.


15 References



  • “OSHA Hazardous Drugs.” OSHA. http://www.osha.gov/SLTC/hazardousdrugs/index.html

16 How Supplied/Storage And Handling



NDC: 63629-9325-1: 60 CAPSULEs in a BOTTLE


17 Patient Counseling Information



Advise the patient to read the FDA-approved patient labeling ( Patient Information and Instructions for Use).


17.1 Administration



Advise the patient or caregiver to:

  • Inspect their tacrolimus capsules medicine when they receive a new prescription and before taking it. If the appearance of the capsule is not the same as usual, or if dosage instructions have changed, advise patients to contact their healthcare provider as soon as possible to make sure that they have the right medicine. Other tacrolimus products cannot be substituted for tacrolimus capsules.
  • Take tacrolimus capsules at the same 12-hour intervals every day to achieve consistent blood concentrations.
  • Take tacrolimus capsules consistently either with or without food because the presence and composition of food decreases the bioavailability of tacrolimus.
  • Not to eat grapefruit or drink grapefruit juice in combination with tacrolimus capsules [see Drug Interactions (7.2)].

17.2 Development Of Lymphoma And Other Malignancies



Inform patients they are at increased risk of developing lymphomas and other malignancies, particularly of the skin, due to immunosuppression. Advise patients to limit exposure to sunlight and ultraviolet (UV) light by wearing protective clothing and using a broad spectrum sunscreen with a high protection factor [see Warnings and Precautions (5.1)] .


17.3 Increased Risk Of Infection



Inform patients they are at increased risk of developing a variety of infections, including opportunistic infections, due to immunosuppression and to contact their physician if they develop any symptoms of infection such as fever, sweats or chills, cough or flu-like symptoms, muscle aches, or warm, red, painful areas on the skin [see Warnings and Precautions (5.2)] .


17.4 New Onset Diabetes After Transplant



Inform patients that tacrolimus can cause diabetes mellitus and should be advised to contact their physician if they develop frequent urination, increased thirst, or hunger [see Warnings and Precautions (5.4)] .


17.5 Nephrotoxicity



Inform patients that tacrolimus can have toxic effects on the kidney that should be monitored. Advise patients to attend all visits and complete all blood tests ordered by their medical team [see Warnings and Precautions (5.5)] .


17.6 Neurotoxicity



Inform patients that they are at risk of developing adverse neurologic reactions including seizure, altered mental status, and tremor. Advise patients to contact their physician should they develop vision changes, delirium, or tremors [see Warnings and Precautions (5.6)] .


17.7 Hyperkalemia



Inform patients that tacrolimus can cause hyperkalemia. Monitoring of potassium levels may be necessary, especially with concomitant use of other drugs known to cause hyperkalemia [see Warnings and Precautions (5.7)] .


17.8 Hypertension



Inform patients that tacrolimus can cause high blood pressure which may require treatment with antihypertensive therapy. Advise patients to monitor their blood pressure [see Warnings and Precautions (5.8)] .


17.9 Drug Interactions



Instruct patients to tell their healthcare providers when they start or stop taking any medicines, including prescription medicines and nonprescription medicines, natural or herbal remedies, nutritional supplements, and vitamins. Advise patients to avoid grapefruit and grapefruit juice [see Drug Interactions (7)].


17.10 Pregnancy, Lactation And Infertility



Inform women of childbearing potential that tacrolimus can harm the fetus. Instruct male and female patients to discuss with their healthcare provider family planning options including appropriate contraception. Also, discuss with pregnant patients the risks and benefits of breastfeeding their infant [see Use in Specific Populations (8.1, 8.2, 8.3)] .

Encourage female transplant patients who become pregnant and male patients who have fathered a pregnancy, exposed to immunosuppressants including tacrolimus, to enroll in the voluntary Transplantation Pregnancy Registry International. To enroll or register, patients can call the toll free number 1-877-955-6877 or https://www.transplantpregnancyregistry.org/ [see Use in Specific Populations (8.1)] .

Based on animal studies, tacrolimus may affect fertility in males and females [see Nonclinical Toxicology (13.1)] .


17.11 Myocardial Hypertrophy



Inform patients to report symptoms of tiredness, swelling, and/or shortness of breath (heart failure).


17.12 Immunizations



Inform patients that tacrolimus capsules can interfere with the usual response to immunizations and that they should avoid live vaccines. [see Warnings and Precautions (5.14)] .

Rx only

Manufactured For:
Accord Healthcare, Inc.,
1009 Slater Road,
Suite 210-B,
Durham, NC 27703,
USA.

Manufactured By:
Intas Pharmaceuticals Limited,
Plot No : 457, 458,
Village – Matoda,
Bavla Road, Ta.- Sanand,
Dist.- Ahmedabad – 382210.
India.

10 0108 6 6010169

Issued September 2021


Package Label.Principal Display Panel



Tacrolimus 1mg Capsule


* Please review the disclaimer below.