NDC 67457-857 Adenosine
Injection, Solution Intravenous

Product Information

What is NDC 67457-857?

The NDC code 67457-857 is assigned by the FDA to the product Adenosine which is a human prescription drug product labeled by Mylan Institutional Llc. The product's dosage form is injection, solution and is administered via intravenous form. The product is distributed in a single package with assigned NDC code 67457-857-30 1 vial in 1 carton / 30 ml in 1 vial. This page includes all the important details about this product, including active and inactive ingredients, pharmagologic classes, product uses and characteristics, UNII information, RxNorm crosswalk and the complete product label.

NDC Product Code67457-857
Proprietary Name What is the Proprietary Name?
The proprietary name also known as the trade name is the name of the product chosen by the medication labeler for marketing purposes.
Adenosine
Non-Proprietary Name What is the Non-Proprietary Name?
The non-proprietary name is sometimes called the generic name. The generic name usually includes the active ingredient(s) of the product.
Adenosine
Product Type What kind of product is this?
Indicates the type of product, such as Human Prescription Drug or Human Over the Counter Drug. This data element matches the “Document Type” field of the Structured Product Listing.
Human Prescription Drug
Dosage FormInjection, Solution - A liquid preparation containing one or more drug substances dissolved in a suitable solvent or mixture of mutually miscible solvents that is suitable for injection.
Administration Route(s) What are the Administration Route(s)?
The translation of the route code submitted by the firm, indicating route of administration.
  • Intravenous - Administration within or into a vein or veins.
Product Labeler Information What is the Labeler Name?
Name of Company corresponding to the labeler code segment of the Product NDC.
Mylan Institutional Llc
Labeler Code67457
FDA Application Number What is the FDA Application Number?
This corresponds to the NDA, ANDA, or BLA number reported by the labeler for products which have the corresponding Marketing Category designated. If the designated Marketing Category is OTC Monograph Final or OTC Monograph Not Final, then the Application number will be the CFR citation corresponding to the appropriate Monograph (e.g. “part 341”). For unapproved drugs, this field will be null.
ANDA090212
Marketing Category What is the Marketing Category?
Product types are broken down into several potential Marketing Categories, such as NDA/ANDA/BLA, OTC Monograph, or Unapproved Drug. One and only one Marketing Category may be chosen for a product, not all marketing categories are available to all product types. Currently, only final marketed product categories are included. The complete list of codes and translations can be found at www.fda.gov/edrls under Structured Product Labeling Resources.
ANDA - A product marketed under an approved Abbreviated New Drug Application.
Start Marketing Date What is the Start Marketing Date?
This is the date that the labeler indicates was the start of its marketing of the drug product.
03-28-2014
Listing Expiration Date What is the Listing Expiration Date?
This is the date when the listing record will expire if not updated or certified by the product labeler.
12-31-2024
Exclude Flag What is the NDC Exclude Flag?
This field indicates whether the product has been removed/excluded from the NDC Directory for failure to respond to FDA"s requests for correction to deficient or non-compliant submissions ("Y"), or because the listing certification is expired ("E"), or because the listing data was inactivated by FDA ("I"). Values = "Y", "N", "E", or "I".
N
NDC Code Structure

What are the uses for Adenosine?


Product Packages

NDC Code 67457-857-30

Package Description: 1 VIAL in 1 CARTON / 30 mL in 1 VIAL

Product Details

What are Adenosine Active Ingredients?

An active ingredient is the substance responsible for the medicinal effects of a product specified by the substance's molecular structure or if the molecular structure is not known, defined by an unambiguous definition that identifies the substance. Each active ingredient name is the preferred term of the UNII code submitted.
  • ADENOSINE 3 mg/mL - A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter.

Adenosine Active Ingredients UNII Codes

NDC to RxNorm Crosswalk

What is RxNorm? RxNorm is a normalized naming system for generic and branded drugs that assigns unique concept identifier(s) known as RxCUIs to NDC products.The NDC to RxNorm Crosswalk for this produdct indicates multiple concept unique identifiers (RXCUIs) are associated with this product:

Adenosine Inactive Ingredients UNII Codes

The inactive ingredients are all the component of a medicinal product OTHER than the active ingredient(s). The acronym "UNII" stands for “Unique Ingredient Identifier” and is used to identify each inactive ingredient present in a product.

Pharmacologic Class(es)

A pharmacologic class is a group of drugs that share the same scientifically documented properties. The following is a list of the reported pharmacologic class(es) corresponding to the active ingredients of this product.

* Please review the disclaimer below.

Adenosine Product Label

FDA filings in the form of structured product labels are documents that include all published material associated whith this product. Product label information includes data like indications and usage generic names, contraindications, active ingredients, strength dosage, routes of administration, appearance, usage, warnings, inactive ingredients, etc.

Product Label Table of Contents



1 Indications And Usage



Adenosine Injection is indicated as an adjunct to thallium-201 myocardial perfusion scintigraphy in patients unable to exercise adequately.


2 Dosage And Administration



The recommended adenosine injection dose is 0.14 mg/kg/min infused over six minutes (total dose of 0.84 mg/kg) (Table 1).

  • •Administer adenosine injection only as a continuous peripheral intravenous infusion
  • •Inject Thallium-201 at the midpoint of the adenosine injection infusion (i.e., after the first three minutes of adenosine injection)
  • •Thallium-201 is physically compatible with adenosine injection and may be injected directly into the adenosine injection infusion set
  • •Inject Thallium-201 as close to the venous access as possible to prevent an inadvertent increase in the dose of adenosine injection (the contents of the intravenous tubing) being administered
  • Visually inspect adenosine injection for particulate matter and discoloration prior to administration. Do not administer adenosine injection if it contains particulate matter or is discolored.

    There are no data on the safety or efficacy of alternative adenosine injection infusion protocols. The safety and efficacy of adenosine injection administered by the intracoronary route have not been established.

    Table 1 Dosage Chart for Adenosine Injection

    Patient Weight
    (kilograms)

    Infusion Rate
    (mL per minute over 6 minutes for total dose of 0.84 mg/kg)

    45

    2.1

    50

    2.3

    55

    2.6

    60

    2.8

    65

    3

    70

    3.3

    75

    3.5

    80

    3.8

    85

    4

    90

    4.2

    The nomogram displayed in Table 1 was derived from the following general formula:


3 Dosage Forms And Strengths



Adenosine Injection, USP is supplied as 20 mL and 30 mL single-dose vials containing a sterile, nonpyrogenic, clear solution of adenosine 3 mg per mL.


4 Contraindications



Adenosine is contraindicated in patients with:

  • •Second- or third-degree AV block (except in patients with a functioning artificial pacemaker) [see Warnings and Precautions (5.2)]
  • •Sinus node disease, such as sick sinus syndrome or symptomatic bradycardia (except in patients with a functioning artificial pacemaker) [see Warnings and Precautions (5.2)]
  • •Known or suspected bronchoconstrictive or bronchospastic lung disease (e.g., asthma) [see Warnings and Precautions (5.3)]
  • •Known hypersensitivity to adenosine [see Warnings and Precautions (5.7)]

5.1 Cardiac Arrest, Ventricular Arrhythmias, And Myocardial Infarction



Fatal and nonfatal cardiac arrest, sustained ventricular tachycardia (requiring resuscitation), and myocardial infarction have occurred following adenosine infusion. Avoid use in patients with symptoms or signs of acute myocardial ischemia, for example, unstable angina or cardiovascular instability; these patients may be at greater risk of serious cardiovascular reactions to adenosine. Appropriate resuscitative measures should be available [see Overdosage (10)].


5.2 Sinoatrial And Atrioventricular Nodal Block



Adenosine exerts a direct depressant effect on the SA and AV nodes and may cause first-, second- or third-degree AV block, or sinus bradycardia. In clinical trials, approximately 6% of patients developed AV block following adenosine administration (first-degree heart block developed in 3%, second-degree in 3%, and third-degree in 0.8% of patients) [see Clinical Trials Experience (6.1)].

Use adenosine with caution in patients with pre-existing first-degree AV block or bundle branch block. Do not use in patients with high-grade AV block or sinus node dysfunction (except in patients with a functioning artificial pacemaker). Discontinue adenosine in any patient who develops persistent or symptomatic high-grade AV block.


5.3 Bronchoconstriction



Adenosine administration can cause dyspnea, bronchoconstriction, and respiratory compromise. Adenosine should be used with caution in patients with obstructive lung disease not associated with bronchoconstriction (e.g., emphysema, bronchitis). Do not use in patients with bronchoconstriction or bronchospasm (e.g., asthma). Discontinue adenosine in any patient who develops severe respiratory difficulties. Resuscitative measures should be available prior to adenosine administration [see Clinical Trials Experience (6.1), Overdosage (10), and Clinical Pharmacology (12.2)].


5.4 Hypotension



Adenosine is a potent peripheral vasodilator and can induce significant hypotension. The risk of serious hypotension may be higher in patients with autonomic dysfunction, hypovolemia, stenotic valvular heart disease, pericarditis or pericardial effusions, or stenotic carotid artery disease with cerebrovascular insufficiency. Discontinue adenosine in any patient who develops persistent or symptomatic hypotension.


5.5 Cerebrovascular Accident



Hemorrhagic and ischemic cerebrovascular accidents have occurred. Hemodynamic effects of adenosine including hypotension or hypertension can be associated with these adverse reactions [see Warnings and Precautions (5.4) and (5.9)].


5.6 Seizures



New-onset or recurrence of convulsive seizures has occurred following adenosine. Some seizures are prolonged and require emergent anticonvulsive management. Aminophylline may increase the risk of seizures associated with adenosine. Methylxanthine use is not recommended in patients who experience seizures in association with adenosine administration [see Overdosage (10)].


5.7 Hypersensitivity, Including Anaphylaxis



Dyspnea, throat tightness, flushing, erythema, rash, and chest discomfort have occurred. Symptomatic treatment may be required. Have personnel and appropriate treatment available. Resuscitative measures may be necessary if symptoms progress [see Post-Marketing Experience (6.2)].


5.8 Atrial Fibrillation



Adenosine can cause atrial fibrillation in patients with or without a history of atrial fibrillation. Atrial fibrillation typically began 1.5 to 3 minutes after initiation of adenosine, lasted for 15 seconds to 6 hours, and spontaneously converted to normal sinus rhythm [see Post-Marketing Experience (6.2)].


5.9 Hypertension



Adenosine can induce clinically significant increases in systolic and diastolic blood pressure. Most increases resolved spontaneously within several minutes, but in some cases, hypertension lasted for several hours [see Clinical Trials Experience (6.1)].


6 Adverse Reactions



The following adverse reactions are discussed in more detail in other sections of the prescribing information:

  • •Fatal Cardiac Arrest, Ventricular Arrhythmias, and Myocardial Infarction [see Warnings and Precautions (5.1)]
  • •Sinoatrial and Atrioventricular Nodal Block [see Warnings and Precautions (5.2)]
  • •Bronchoconstriction [see Warnings and Precautions (5.3)]
  • •Hypotension [see Warnings and Precautions (5.4)]
  • •Cerebrovascular Accident [see Warnings and Precautions (5.5)]
  • •Seizures [see Warnings and Precautions (5.6)]
  • •Hypersensitivity [see Warnings and Precautions (5.7)]
  • •Atrial fibrillation [see Warnings and Precautions (5.8)]
  • •Hypertension [see Warnings and Precautions (5.9)]

6.1 Clinical Trials Experience



Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

The following adverse reactions, with an incidence of at least 1%, were reported with adenosine among 1,421 patients in clinical trials. 11% of the adverse reactions occurred several hours after adenosine administration. 8% of the adverse reactions began with adenosine infusion and persisted for up to 24 hours.

The most common (incidence ≥ 10%) adverse reactions to adenosine are flushing, chest discomfort, shortness of breath, headache, throat, neck or jaw discomfort, gastrointestinal discomfort, and dizziness (Table 2).

Table 2 Adverse Reactions in Clinical Trials (Frequency ≥ 1%)

Adverse Reactions

Adenosine
N=1,421

Flushing

44%

Chest discomfort

40%

Dyspnea

28%

Headache

18%

Throat, neck or jaw discomfort

15%

Gastrointestinal discomfort

13%

Lightheadedness/dizziness

12%

Upper extremity discomfort

4%

ST segment depression

3%

First-degree AV block

3%

Second-degree AV block

3%

Paresthesia

2%

Hypotension

2%

Nervousness

2%

Arrhythmias

1%

Adverse reactions to adenosine of any severity reported in less than 1% of patients include:

Body as a Whole:

back discomfort, lower extremity discomfort, weakness

Cardiovascular System:

myocardial infarction, ventricular arrhythmia, third-degree AV block, bradycardia, palpitation, sinus exit block, sinus pause, T-wave changes, hypertension (systolic blood pressure > 200 mm Hg)

Respiratory System:

cough

Central Nervous System:

drowsiness, emotional instability, tremors

Genital/Urinary System:

Vaginal pressure, urgency

Special Senses:

blurred vision, dry mouth, ear discomfort, metallic taste, nasal congestion, scotomas, tongue discomfort


6.2 Post-Marketing Experience



The following adverse reactions have been reported from marketing experience with adenosine. Because these reactions are reported voluntarily from a population of uncertain size, are associated with concomitant diseases and multiple drug therapies and surgical procedures, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Cardiac Disorders:

cardiac arrest, atrial fibrillation, cardiac failure, myocardial infarction, tachycardia, ventricular arrhythmia

Gastrointestinal Disorders:

nausea and vomiting

General Disorders and Administration
Site Conditions:

chest pain, injection site reaction, infusion site pain

Immune System Disorders:

hypersensitivity

Nervous System Disorders:

cerebrovascular accident including intracranial hemorrhage, seizure activity including tonic-clonic (grand mal) seizures, loss of consciousness

Respiratory, Thoracic and Mediastinal Disorders:

bronchospasm, respiratory arrest, throat tightness


7.1 Effects Of Other Drugs On Adenosine



  • •The vasoactive effects of adenosine are inhibited by adenosine receptor antagonists, (such as methylxanthines (e.g., caffeine, aminophylline, and theophylline). The safety and efficacy of adenosine in the presence of these agents has not been systematically evaluated [see Overdosage (10)].
  • •The vasoactive effects of adenosine are potentiated by nucleoside transport inhibitors such as dipyridamole. The safety and efficacy of adenosine in the presence of dipyridamole has not been systematically evaluated.
  • •Whenever possible, drugs that might inhibit or augment the effects of adenosine should be withheld for at least five half-lives prior to the use of adenosine.

7.2 Effects Of Adenosine On Other Drugs



Adenosine injection has been given with other cardioactive drugs (such as beta adrenergic blocking agents, cardiac glycosides, and calcium channel blockers) without apparent adverse interactions, but its effectiveness with these agents has not been systematically evaluated. Because of the potential for additive or synergistic depressant effects on the SA and AV nodes, however, adenosine should be used with caution in the presence of these agents [see Warnings and Precautions (5.2)].


Other



Pregnancy Category C. Animal reproduction studies have not been conducted with adenosine; nor have studies been performed in pregnant women. Because it is not known whether adenosine can cause fetal harm when administered to pregnant women, adenosine should be used during pregnancy only if clearly needed.

Hemodynamic Effects

Adenosine produces a direct negative chronotropic, dromotropic and inotropic effect on the heart, presumably due to A1-receptor agonism, and produces peripheral vasodilation, presumably due to A2-receptor agonism. The net effect of adenosine in humans is typically a mild to moderate reduction in systolic, diastolic and mean arterial blood pressure associated with a reflex increase in heart rate. Rarely, significant hypotension and tachycardia have been observed [see Warnings and Precautions (5.4)].

Distribution

Intravenously administered adenosine distributes from the circulation via cellular uptake, primarily by erythrocytes and vascular endothelial cells. This process involves a specific transmembrane nucleoside carrier system that is reversible, nonconcentrative, and bidirectionally symmetrical.

Metabolism

Intracellular adenosine is metabolized either via phosphorylation to adenosine monophosphate by adenosine kinase, or via deamination to inosine by adenosine deaminase in the cytosol. Since adenosine kinase has a lower Km and Vmax than adenosine deaminase, deamination plays a significant role only when cytosolic adenosine saturates the phosphorylation pathway. Inosine formed by deamination of adenosine can leave the cell intact or can be degraded to hypoxanthine, xanthine, and ultimately uric acid. Adenosine monophosphate formed by phosphorylation of adenosine is incorporated into the high-energy phosphate pool.

Elimination

While extracellular adenosine is primarily cleared from plasma by cellular uptake with a half-life of less than 10 seconds in whole blood, excessive amounts may be deaminated by an ecto-form of adenosine deaminase.

Specific Populations

Renal Impairment

As adenosine does not require renal function for its activation or inactivation, renal impairment would not be expected to alter its effectiveness or tolerability.

Hepatic Impairment

As adenosine does not require hepatic function for its activation or inactivation, hepatic impairment would not be expected to alter its effectiveness or tolerability.


8.3 Nursing Mothers



It is not known whether adenosine is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions from adenosine in nursing infants, the decision to interrupt nursing after administration of adenosine or not to administer adenosine, should take into account the importance of the drug to the mother.


8.4 Pediatric Use



The safety and effectiveness of adenosine in patients less than 18 years of age have not been established.


8.5 Geriatric Use



Clinical studies with adenosine did not include sufficient numbers of subjects aged younger than 65 years to determine whether they respond differently. Other reported experience has not revealed clinically relevant differences of the response of elderly in comparison to younger patients.


10 Overdosage



The half-life of adenosine is less than 10 seconds and adverse reactions of adenosine usually resolve quickly when the infusion is discontinued, although delayed or persistent reactions have been observed. Methylxanthines, such as caffeine, aminophylline, and theophylline, are competitive adenosine receptor antagonists and theophylline has been used to terminate persistent adverse reactions. In clinical trials, theophylline (50 to 125 mg slow intravenous injection) was used to attenuate adenosine adverse reactions in approximately 2% of patients. Methylxanthine use is not recommended in patients who experience seizures in association with adenosine [see Drug Interactions (7.1)].


11 Description



Adenosine is an endogenous nucleoside and is chemically described as 6-amino-9-beta-D-ribofuranosyl-9-H-purine. Adenosine has the following structural formula:

The molecular formula for adenosine is C10H13N5O4 and its molecular weight is 267.24.

Adenosine, USP is a white crystalline powder. It is soluble in water and practically insoluble in alcohol. Solubility increases by warming and lowering the pH of the solution.

Each Adenosine Injection, USP vial contains a sterile, non-pyrogenic solution of adenosine 3 mg per mL and sodium chloride 9 mg per mL in water for injection, with pH between 4.5 and 7.5.


12.1 Mechanism Of Action



Adenosine causes cardiac vasodilation which increases cardiac blood flow. Adenosine is thought to exert its pharmacological effects through activation of purine receptors (cell-surface A1 and A2 adenosine receptors). Although the exact mechanism by which adenosine receptor activation relaxes vascular smooth muscle is not known, there is evidence to support both inhibition of the slow inward calcium current reducing calcium uptake, and activation of adenylate cyclase through A2 receptors in smooth muscle cells. Adenosine may also lessen vascular tone by modulating sympathetic neurotransmission. The intracellular uptake of adenosine is mediated by a specific transmembrane nucleoside transport system. Once inside the cell, adenosine is rapidly phosphorylated by adenosine kinase to adenosine monophosphate, or deaminated by adenosine deaminase to inosine. These intracellular metabolites of adenosine are not vasoactive.

Myocardial uptake of thallium-201 is directly proportional to coronary blood flow. Since adenosine significantly increases blood flow in normal coronary arteries with little or no increase in stenotic arteries, adenosine causes relatively less thallium-201 uptake in vascular territories supplied by stenotic coronary arteries i.e., a greater difference is seen after adenosine between areas served by normal and areas served by stenotic vessels than is seen prior to adenosine.


13.1 Carcinogenesis, Mutagenesis, Impairment Of Fertility



Studies in animals have not been performed to evaluate adenosine's carcinogenic potential or potential effects on fertility. Adenosine was negative for genotoxic potential in the Salmonella (Ames Test) and Mammalian Microsome Assay.

Adenosine, however, like other nucleosides at millimolar concentrations present for several doubling times of cells in culture, is known to produce a variety of chromosomal alterations.


14 Clinical Studies



In two crossover comparative studies involving 319 subjects who could exercise (including 106 healthy volunteers and 213 patients with known or suspected coronary disease), adenosine and exercise thallium images were compared by blinded observers. The images were concordant for the presence of perfusion defects in 85.5% of cases by global analysis (patient by patient) and up to 93% of cases based on vascular territories.

In the two studies, 193 patients also had recent coronary arteriography for comparison (healthy volunteers were not catheterized). The sensitivity for detecting angiographically significant disease (≥ 50% reduction in the luminal diameter of at least one major vessel) was 64% for adenosine and 64% for exercise testing. The specificity was 54% for adenosine and 65% for exercise testing. The 95% confidence limits for adenosine sensitivity were 56% to 78% and for specificity were 37% to 71%.

Intracoronary Doppler flow catheter studies have demonstrated that a dose of intravenous adenosine of 0.14 mg/kg/min produces maximum coronary hyperemia (relative to intracoronary papaverine) in approximately 95% of cases within two to three minutes of the onset of the infusion. Coronary blood flow velocity returns to basal levels within one to two minutes of discontinuing the adenosine infusion.


16.1 How Supplied



Adenosine Injection, USP is supplied as 20 mL and 30 mL single-dose vials of sterile, nonpyrogenic solution in normal saline as follows:

NDC

Adenosine Injection, USP (3 mg per mL)

Package Factor

67457-856-20

60 mg per 20 mL Single-Dose Vial

1 vial per carton

67457-857-30

90 mg per 30 mL Single-Dose Vial

1 vial per carton


16.2 Storage And Handling



Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° and 30°C (59° and 86°F). [See USP Controlled Room Temperature.]

Do not refrigerate as crystallization may occur. If crystallization has occurred, dissolve crystals by warming to room temperature. The solution must be clear at the time of use.

Discard unused portion.

Sterile, Nonpyrogenic, Preservative-free.

The container closure is not made with natural rubber latex.


17 Patient Counseling Information



  • •Advise patients that they may be at increased risk of fatal and nonfatal heart attacks, abnormal heart rhythms, cardiac arrest, heart block, significant increase or decrease in blood pressure, bronchoconstriction, hypersensitivity reactions, seizures, or cerebrovascular accidents with the use of adenosine [see Warnings and Precautions (5.1-5.9)].
  • •Advise patients with COPD or asthma to discuss their respiratory history with their clinician before scheduling a myocardial perfusion imaging study with adenosine [see Warnings and Precautions (5.3)].
  • •Methylxanthines have the potential to impact the effects of adenosine. Instruct patients to avoid consumption of any products containing methylxanthines, including caffeinated coffee, tea or other caffeinated beverages, caffeine-containing drug products, aminophylline, and theophylline prior to the myocardial perfusion imaging study. Question patients about a history of seizures [see Warnings and Precautions (5.6), Drug Interactions (7.1), and Overdosage (10)].

    Manufactured for:

    Mylan Institutional LLC

    Rockford, IL 61103 U.S.A.

    Manufactured by:

    Mylan Laboratories Limited

    Bangalore, India

    JUNE 2017


Package/Label Display Panel



NDC 67457-856-20

Adenosine Injection, USP

60 mg per 20 mL

(3 mg per mL)

For Intravenous Infusion Only

Mylan

Rx only

Single-Dose Vial

NDC 67457-857-30

Adenosine Injection, USP

90 mg per 30 mL

(3 mg per mL)

For Intravenous Infusion Only

Mylan

Rx only

Singe-Dose Vial


* Please review the disclaimer below.