FDA Label for Betalido Kit

View Indications, Usage & Precautions

    1. OTHER
    2. DESCRIPTION
    3. CLINICAL PHARMACOLOGY
    4. INDICATIONS AND USAGE
    5. CONTRAINDICATIONS
    6. SERIOUS NEUROLOGIC ADVERSE REACTIONS WITH EPIDURAL ADMINISTRATION
    7. GENERAL
    8. CARDIO-RENAL
    9. ENDOCRINE
    10. FUNGAL INFECTIONS
    11. SPECIAL PATHOGENS
    12. TUBERCULOSIS
    13. VACCINATION
    14. VIRAL INFECTIONS
    15. NEUROLOGIC
    16. OPHTHALMIC
    17. GASTROINTESTINAL
    18. INTRA-ARTICULAR AND SOFT TISSUE ADMINISTRATION
    19. MUSCULOSKELETAL
    20. NEURO-PSYCHIATRIC
    21. INFORMATION FOR PATIENTS
    22. AMINOGLUTETHIMIDE
    23. AMPHOTERICIN B INJECTION AND POTASSIUM-DEPLETING AGENTS
    24. ANTIBIOTICS
    25. ANTICHOLINESTERASES
    26. ANTICOAGULANTS, ORAL
    27. ANTIDIABETICS
    28. ANTITUBERCULAR DRUGS
    29. CHOLESTYRAMINE
    30. CYCLOSPORINE
    31. DIGITALIS GLYCOSIDES
    32. ESTROGENS, INCLUDING ORAL CONTRACEPTIVES
    33. HEPATIC ENZYME INDUCERS (E.G., BARBITURATES, PHENYTOIN, CARBAMAZEPINE, RIFAMPIN)
    34. INTERACTIONS WITH STRONG CYP3A4 INHIBITORS
    35. NONSTEROIDAL ANTI-INFLAMMATORY AGENTS (NSAIDS)
    36. SKIN TESTS
    37. VACCINES
    38. CARCINOGENESIS, MUTAGENESIS, IMPAIRMENT OF FERTILITY
    39. TERATOGENIC EFFECTS
    40. NURSING MOTHERS
    41. PEDIATRIC USE
    42. GERIATRIC USE
    43. ADVERSE REACTIONS
    44. OVERDOSAGE
    45. DOSAGE AND ADMINISTRATION
    46. BURSITIS, TENOSYNOVITIS, PERITENDINITIS
    47. RHEUMATOID ARTHRITIS AND OSTEOARTHRITIS
    48. DERMATOLOGIC CONDITIONS
    49. DISORDERS OF THE FOOT
    50. HOW SUPPLIED
    51. MECHANISM OF ACTION
    52. HEMODYNAMICS
    53. PHARMACOKINETICS AND METABOLISM
    54. WARNINGS
    55. USE IN THE HEAD AND NECK AREA
    56. CLINICALLY SIGNIFICANT DRUG INTERACTIONS
    57. DRUG/LABORATORY TEST INTERACTIONS
    58. LABOR AND DELIVERY
    59. SYSTEMIC
    60. CENTRAL NERVOUS SYSTEM
    61. CARDIOVASCULAR SYSTEM
    62. ALLERGIC
    63. HEMATOLOGIC
    64. MANAGEMENT OF LOCAL ANESTHETIC EMERGENCIES
    65. EPIDURAL ANESTHESIA
    66. CAUDAL AND LUMBAR EPIDURAL BLOCK
    67. ADULTS
    68. CHILDREN
    69. STERILIZATION, STORAGE AND TECHNICAL PROCEDURES
    70. OTC - ACTIVE INGREDIENT
    71. PURPOSE:
    72. WARNINGS:
    73. DO NOT USE:
    74. ASK A DOCTOR BEFORE USE IF YOU HAVE:
    75. STOP USE:
    76. KEEP OUT OF REACH OF CHILDREN
    77. DIRECTIONS POVIDONE IODINE:
    78. OTHER INFORMATION:
    79. INDICATIONS & USAGE
    80. INACTIVE INGREDIENTS
    81. ACTIVE INGREDIENT
    82. PURPOSE
    83. USES
    84. DO NOT USE
    85. WHEN USING THIS PRODUCT DO NOT
    86. STOP USE AND ASK A DOCTOR IF
    87. KEEP OUT OF REACH OF CHILDREN.
    88. DIRECTIONS
    89. OTHER INFORMATION
    90. INACTIVE INGREDIENT
    91. PACKAGE LABEL.PRINCIPAL DISPLAY PANEL

Betalido Kit Product Label

The following document was submitted to the FDA by the labeler of this product Asclemed Usa, Inc.. The document includes published materials associated whith this product with the essential scientific information about this product as well as other prescribing information. Product labels may durg indications and usage, generic names, contraindications, active ingredients, strength dosage, routes of administration, appearance, warnings, inactive ingredients, etc.

Other



Betamethasone Sodium Phosphate and Betamethasone Acetate Injectable Suspension, USP, 6 mg/mL

30 mg/5 mL (6 mg/mL)

Lidocaine HCl Injection, USP

For Infiltration and Nerve Block Including Caudal and Epidural Use.

Preservative-Free

Rx only


Description



Betamethasone Sodium Phosphate and Betamethasone Acetate Injectable Suspension is a sterile aqueous suspension containing 3 mg per milliliter betamethasone, as betamethasone sodium phosphate, and 3 mg per milliliter betamethasone acetate. Inactive ingredients per mL: 7.1 mg dibasic sodium phosphate anhydrous; 3.4 mg monobasic sodium phosphate monohydrate; 0.1 mg edetate disodium; and 0.2 mg benzalkonium chloride as a preservative. The pH is adjusted to between 6.8 and 7.2.

The formula for betamethasone sodium phosphate is C 22H 28FNa 2O 8P and it has a molecular weight of 516.40. Chemically, it is 9-Fluoro-11β,17,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione 21-(disodium phosphate).

The formula for betamethasone acetate is C 24H 31FO 6 and it has a molecular weight of 434.50. Chemically, it is 9-Fluoro-11β,17,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione 21-acetate.

The chemical structures for betamethasone sodium phosphate and betamethasone acetate are as follows:


Structural Formula


Structural Formula

Betamethasone sodium phosphate is a white to practically white, odorless powder, and is hygroscopic. It is freely soluble in water and in methanol, but is practically insoluble in acetone and in chloroform.

Betamethasone acetate is a white to creamy white, odorless powder that sinters and resolidifies at about 165°C, and remelts at about 200°C to 220°C with decomposition. It is practically insoluble in water, but freely soluble in acetone, and is soluble in alcohol and in chloroform.

Lidocaine hydrochloride injection, USP is sterile, nonpyrogenic, aqueous solution that contains a local anesthetic agent and is administered parenterally by injection. See INDICATIONS AND USAGE section for specific uses.

Lidocaine hydrochloride injection, USP contains lidocaine hydrochloride, which is chemically designated as acetamide, 2-(diethylamino)-N-(2,6-dimethylphenyl)-, monohydrochloride and has the molecular weight 270.8. Lidocaine hydrochloride (C 14H 22N 2O • HCl) has the following structural formula:

Lidocaine hydrochloride injection, USP is a sterile, nonpyrogenic, isotonic solution containing sodium chloride. The pH of the solution is adjusted to approximately 6.5 (5.0 to 7.0) with sodium hydroxide and/or hydrochloric acid.


Mechanism Of Action




Lidocaine hydrochloride stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action.


Hemodynamics




Excessive blood levels may cause changes in cardiac output, total peripheral resistance, and mean arterial pressure. With central neural blockade these changes may be attributable to block of autonomic fibers, a direct depressant effect of the local anesthetic agent on various components of the cardiovascular system, and/or the beta-adrenergic receptor stimulating action of epinephrine when present. The net effect is normally a modest hypotension when the recommended dosages are not exceeded.


Pharmacokinetics And Metabolism




Information derived from diverse formulations, concentrations and usages reveals that lidocaine hydrochloride is completely absorbed following parenteral administration, its rate of absorption depending, for example, upon various factors such as the site of administration and the presence or absence of a vasoconstrictor agent. Except for intravascular administration, the highest blood levels are obtained following intercostal nerve block and the lowest after subcutaneous administration.

The plasma binding of lidocaine hydrochloride is dependent on drug concentration, and the fraction bound decreases with increasing concentration. At concentrations of 1 to 4 mcg of free base per mL 60 to 80 percent of lidocaine hydrochloride is protein bound. Binding is also dependent on the plasma concentration of the alpha-1-acid glycoprotein.

Lidocaine hydrochloride crosses the blood-brain and placental barriers, presumably by passive diffusion.

Lidocaine hydrochloride is metabolized rapidly by the liver, and metabolites and unchanged drug are excreted by the kidneys. Biotransformation includes oxidative N-dealkylation, ring hydroxylation, cleavage of the amide linkage, and conjugation. N-dealkylation, a major pathway of biotransformation, yields the metabolites monoethylglycinexylidide and glycinexylidide. The pharmacological/toxicological actions of these metabolites are similar to, but less potent than, those of lidocaine hydrochloride. Approximately 90% of lidocaine hydrochloride administered is excreted in the form of various metabolites, and less than 10% is excreted unchanged. The primary metabolite in urine is a conjugate of 4-hydroxy-2,6-dimethylaniline.

The elimination half-life of lidocaine hydrochloride following an intravenous bolus injection is typically 1.5 to 2 hours. Because of the rapid rate at which lidocaine hydrochloride is metabolized, any condition that affects liver function may alter lidocaine hydrochloride kinetics. The half-life may be prolonged two-fold or more in patients with liver dysfunction. Renal dysfunction does not affect lidocaine hydrochloride kinetics but may increase the accumulation of metabolites.

Factors such as acidosis and the use of CNS stimulants and depressants affect the CNS levels of lidocaine hydrochloride required to produce overt systemic effects. Objective adverse manifestations become increasingly apparent with increasing venous plasma levels above 6 mcg free base per mL. In the rhesus monkey arterial blood levels of 18 to 21 mcg/mL have been shown to be threshold for convulsive activity.


Warnings




LIDOCAINE HYDROCHLORIDE INJECTION FOR INFILTRATION AND NERVE BLOCK SHOULD BE EMPLOYED ONLY BY CLINICIANS WHO ARE WELL VERSED IN DIAGNOSIS AND MANAGEMENT OF DOSE-RELATED TOXICITY AND OTHER ACUTE EMERGENCIES THAT MIGHT ARISE FROM THE BLOCK TO BE EMPLOYED AND THEN ONLY AFTER ENSURING THE IMMEDIATE AVAILABILITY OF OXYGEN, OTHER RESUSCITATIVE DRUGS, CARDIOPULMONARY EQUIPMENT AND THE PERSONNEL NEEDED FOR PROPER MANAGEMENT OF TOXIC REACTIONS AND RELATED EMERGENCIES (see also ADVERSE REACTIONSand PRECAUTIONS). DELAY IN PROPER MANAGEMENT OF DOSE-RELATED TOXICITY, UNDERVENTILATION FROM ANY CAUSE AND/OR ALTERED SENSITIVITY MAY LEAD TO THE DEVELOPMENT OF ACIDOSIS, CARDIAC ARREST AND, POSSIBLY, DEATH.

Methemoglobinemia

Cases of methemoglobinemia have been reported in association with local anesthetic use. Although all patients are at risk for methemoglobinemia, patients with glucose-6-phosphate dehydrogenase deficiency, congenital or idiopathic methemoglobinemia, cardiac or pulmonary compromise, infants under 6 months of age, and concurrent exposure to oxidizing agents or their metabolites are more susceptible to developing clinical manifestations of the condition. If local anesthetics must be used in these patients, close monitoring for symptoms and signs of methemoglobinemia is recommended.

Signs of methemoglobinemia may occur immediately or may be delayed some hours after exposure, and are characterized by a cyanotic skin discoloration and/or abnormal coloration of the blood. Methemoglobin levels may continue to rise; therefore, immediate treatment is required to avert more serious central nervous system and cardiovascular adverse effects, including seizures, coma, arrhythmias, and death. Discontinue lidocaine hydrochloride and any other oxidizing agents. Depending on the severity of the signs and symptoms, patients may respond to supportive care, i.e., oxygen therapy, hydration. A more severe clinical presentation may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.

Intra-articular infusions of local anesthetics following arthroscopic and other surgical procedures is an unapproved use, and there have been post-marketing reports of chondrolysis in patients receiving such infusions. The majority of reported cases of chondrolysis have involved the shoulder joint; cases of gleno-humeral chondrolysis have been described in pediatric and adult patients following intra-articular infusions of local anesthetics with and without epinephrine for periods of 48 to 72 hours. There is insufficient information to determine whether shorter infusion periods are not associated with these findings. The time of onset of symptoms, such as joint pain, stiffness and loss of motion can be variable, but may begin as early as the 2 nd month after surgery. Currently, there is no effective treatment for chondrolysis; patients who experienced chondrolysis have required additional diagnostic and therapeutic procedures and some required arthroplasty or shoulder replacement.

To avoid intravascular injection, aspiration should be performed before the local anesthetic solution is injected. The needle must be repositioned until no return of blood can be elicited by aspiration. Note, however, that the absence of blood in the syringe does not guarantee that intravascular injection has been avoided.

Anaphylactic reactions may occur following administration of lidocaine hydrochloride (see ADVERSE REACTIONS).

In the case of severe reaction, discontinue the use of the drug.

For external use only

Flammable - keep away from fire or flame


Use In The Head And Neck Area




Small doses of local anesthetics injected into the head and neck area, including retrobulbar, dental and stellate ganglion blocks, may produce adverse reactions similar to systemic toxicity seen with unintentional intravascular injections of larger doses. Confusion, convulsions, respiratory depression and/or respiratory arrest, and cardiovascular stimulation or depression have been reported. These reactions may be due to intra-arterial injection of the local anesthetic with retrograde flow to the cerebral circulation. Patients receiving these blocks should have their circulation and respiration monitored and be constantly observed. Resuscitative equipment and personnel for treating adverse reactions should be immediately available. Dosage recommendations should not be exceeded (see DOSAGE AND ADMINISTRATION).


Clinically Significant Drug Interactions




The administration of local anesthetic solutions containing epinephrine or norepinephrine to patients receiving monoamine oxidase inhibitors or tricyclic antidepressants may produce severe, prolonged hypertension.

Phenothiazines and butyrophenones may reduce or reverse the pressor effect of epinephrine.

Concurrent use of these agents should generally be avoided. In situations when concurrent therapy is necessary, careful patient monitoring is essential.

Concurrent administration of vasopressor drugs (for the treatment of hypotension related to obstetric blocks) and ergot-type oxytocic drugs may cause severe, persistent hypertension or cerebrovascular accidents.


Drug/Laboratory Test Interactions



The intramuscular injection of lidocaine hydrochloride may result in an increase in creatine phosphokinase levels. Thus, the use of this enzyme determination, without isoenzyme separation, as a diagnostic test for the presence of acute myocardial infarction may be compromised by the intramuscular injection of lidocaine hydrochloride.

Patients who are administered local anesthetics are at increased risk of developing methemoglobinemia when concurrently exposed to the following drugs, which could include other local anesthetics:


Examples of Drugs Associated with Methemoglobinemia:
Class
Examples
Nitrates/Nitrites
nitric oxide, nitroglycerin, nitroprusside, nitrous oxide
Local anesthetics
articaine, benzocaine, bupivacaine, lidocaine, mepivacaine, prilocaine, procaine, ropivacaine, tetracaine
Antineoplastic agents
cyclophosphamide, flutamide, hydroxyurea, ifosfamide, rasburicase
Antibiotics
dapsone, nitrofurantoin, para-aminosalicylic acid, sulfonamides
Antimalarials
chloroquine, primaquine
Anticonvulsants
Phenobarbital, phenytoin, sodium valproate
Other drugs
acetaminophen, metoclopramide, quinine, sulfasalazine


Labor And Delivery




Local anesthetics rapidly cross the placenta and when used for epidural, paracervical, pudendal or caudal block anesthesia, can cause varying degrees of maternal, fetal and neonatal toxicity (see CLINICAL PHARMACOLOGY, Pharmacokinetics and Metabolism). The potential for toxicity depends upon the procedure performed, the type and amount of drug used, and the technique of drug administration. Adverse reactions in the parturient, fetus and neonate involve alterations of the central nervous system, peripheral vascular tone and cardiac function.

Maternal hypotension has resulted from regional anesthesia. Local anesthetics produce vasodilation by blocking sympathetic nerves. Elevating the patient’s legs and positioning her on her left side will help prevent decreases in blood pressure.

The fetal heart rate also should be monitored continuously, and electronic fetal monitoring is highly advisable.

Epidural, spinal, paracervical, or pudendal anesthesia may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts. In one study, paracervical block anesthesia was associated with a decrease in the mean duration of first stage labor and facilitation of cervical dilation. However, spinal and epidural anesthesia have also been reported to prolong the second stage of labor by removing the parturient’s reflex urge to bear down or by interfering with motor function. The use of obstetrical anesthesia may increase the need for forceps assistance.

The use of some local anesthetic drug products during labor and delivery may be followed by diminished muscle strength and tone for the first day or two of life. The long-term significance of these observations is unknown. Fetal bradycardia may occur in 20 to 30 percent of patients receiving paracervical nerve block anesthesia with the amide-type local anesthetics and may be associated with fetal acidosis. Fetal heart rate should always be monitored during paracervical anesthesia. The physician should weigh the possible advantages against risks when considering a paracervical block in prematurity, toxemia of pregnancy, and fetal distress. Careful adherence to recommended dosage is of the utmost importance in obstetrical paracervical block. Failure to achieve adequate analgesia with recommended doses should arouse suspicion of intravascular or fetal intracranial injection. Cases compatible with unintended fetal intracranial injection of local anesthetic solution have been reported following intended paracervical or pudendal block or both. Babies so affected present with unexplained neonatal depression at birth, which correlates with high local anesthetic serum levels, and often manifest seizures within six hours. Prompt use of supportive measures combined with forced urinary excretion of the local anesthetic has been used successfully to manage this complication.

Case reports of maternal convulsions and cardiovascular collapse following use of some local anesthetics for paracervical block in early pregnancy (as anesthesia for elective abortion) suggest that systemic absorption under these circumstances may be rapid. The recommended maximum dose of each drug should not be exceeded. Injection should be made slowly and with frequent aspiration. Allow a 5-minute interval between sides.


Systemic




Adverse experiences following the administration of lidocaine hydrochloride are similar in nature to those observed with other amide local anesthetic agents. These adverse experiences are, in general, dose-related and may result from high plasma levels caused by excessive dosage, rapid absorption or inadvertent intravascular injection, or may result from a hypersensitivity, idiosyncrasy or diminished tolerance on the part of the patient. Serious adverse experiences are generally systemic in nature. The following types are those most commonly reported:


Central Nervous System




CNS manifestations are excitatory and/or depressant and may be characterized by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting, sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, respiratory depression and arrest. The excitatory manifestations may be very brief or may not occur at all, in which case the first manifestation of toxicity may be drowsiness merging into unconsciousness and respiratory arrest.

Drowsiness following the administration of lidocaine hydrochloride is usually an early sign of a high blood level of the drug and may occur as a consequence of rapid absorption.


Cardiovascular System




Cardiovascular manifestations are usually depressant and are characterized by bradycardia, hypotension, and cardiovascular collapse, which may lead to cardiac arrest.


Allergic



Allergic reactions are characterized by cutaneous lesions, urticaria, edema or anaphylactoid reactions. Allergic reactions may occur as a result of sensitivity to local anesthetic agents. Allergic reactions, including anaphylactic reactions, may occur as a result of sensitivity to lidocaine, but are infrequent. If allergic reactions do occur, they should be managed by conventional means. The detection of sensitivity by skin testing is of doubtful value.

There have been no reports of cross sensitivity between lidocaine hydrochloride and procainamide or between lidocaine hydrochloride and quinidine.


Hematologic



Methemoglobinemia.


Management Of Local Anesthetic Emergencies




The first consideration is prevention, best accomplished by careful and constant monitoring of cardiovascular and respiratory vital signs and the patient’s state of consciousness after each local anesthetic injection. At the first sign of change, oxygen should be administered.

The first step in the management of convulsions, as well as underventilation or apnea due to unintended subarachnoid injection of drug solution, consists of immediate attention to the maintenance of a patent airway and assisted or controlled ventilation with oxygen and a delivery system capable of permitting immediate positive airway pressure by mask. Immediately after the institution of these ventilatory measures, the adequacy of the circulation should be evaluated, keeping in mind that drugs used to treat convulsions sometimes depress the circulation when administered intravenously. Should convulsions persist despite adequate respiratory support, and if the status of the circulation permits, small increments of an ultra-short acting barbiturate (such as thiopental or thiamylal) or a benzodiazepine (such as diazepam) may be administered intravenously. The clinician should be familiar, prior to the use of local anesthetics, with these anticonvulsant drugs. Supportive treatment of circulatory depression may require administration of intravenous fluids and, when appropriate, a vasopressor as directed by the clinical situation (e.g., ephedrine).

If not treated immediately, both convulsions and cardiovascular depression can result in hypoxia, acidosis, bradycardia, arrhythmias and cardiac arrest. Underventilation or apnea due to unintentional subarachnoid injection of local anesthetic solution may produce these same signs and also lead to cardiac arrest if ventilatory support is not instituted. If cardiac arrest should occur, standard cardiopulmonary resuscitative measures should be instituted.

Endotracheal intubation, employing drugs and techniques familiar to the clinician, may be indicated, after initial administration of oxygen by mask, if difficulty is encountered in the maintenance of a patent airway or if prolonged ventilatory support (assisted or controlled) is indicated.

Dialysis is of negligible value in the treatment of acute overdosage with lidocaine hydrochloride.

The oral LD 50 of lidocaine hydrochloride in non-fasted female rats is 459 (346 to 773) mg/kg (as the salt) and 214 (159 to 324) mg/kg (as the salt) in fasted female rats.


Epidural Anesthesia




For epidural anesthesia the following dosage form of lidocaine hydrochloride injection is recommended:

1% without epinephrine 30 mL single dose vials

Although this solution is intended specifically for epidural anesthesia, it may also be used for infiltration and peripheral nerve block, provided it is employed as a single dose unit.

This solution contains no bacteriostatic agent.

In epidural anesthesia, the dosage varies with the number of dermatomes to be anesthetized (generally 2 to 3 mL of the indicated concentration per dermatome).


Caudal And Lumbar Epidural Block




As a precaution against the adverse experience sometimes observed following unintentional penetration of the subarachnoid space, a test dose such as 2 to 3 mL of 1.5% lidocaine hydrochloride should be administered at least 5 minutes prior to injecting the total volume required for a lumbar or caudal epidural block. The test dose should be repeated if the patient is moved in a manner that may have displaced the catheter. Epinephrine, if contained in the test dose (10 to 15 mcg have been suggested), may serve as a warning of unintentional intravascular injection. If injected into a blood vessel, this amount of epinephrine is likely to produce a transient “epinephrine response” within 45 seconds, consisting of an increase in heart rate and systolic blood pressure, circumoral pallor, palpitations and nervousness in the unsedated patient. The sedated patient may exhibit only a pulse rate increase of 20 or more beats per minute for 15 or more seconds. Patients on beta blockers may not manifest changes in heart rate, but blood pressure monitoring can detect an evanescent rise in systolic blood pressure. Adequate time should be allowed for onset of anesthesia after administration of each test dose. The rapid injection of a large volume of lidocaine hydrochloride injection through the catheter should be avoided, and, when feasible, fractional doses should be administered.

In the event of the known injection of a large volume of local anesthetic solution into the subarachnoid space, after suitable resuscitation and if the catheter is in place, consider attempting the recovery of drug by draining a moderate amount of cerebrospinal fluid (such as 10 mL) through the epidural catheter.


Adults




For normal healthy adults, the maximum individual dose should not exceed 4.5 mg/kg (2 mg/lb) of body weight, and in general it is recom mended that the max i m um t otal dose does not exceed 300 mg. For continuous epidural or caudal anesthesia, the maximum recommended dosage should not be administered at intervals of less than 90 minutes. When continuous lumbar or caudal epidural anesthesia is used for non-obstetrical procedures, more drug may be administered if required to produce adequate anesthesia.

The maximum recommended dose per 90 minute period of lidocaine hydrochloride for paracervical block in obstetrical patients and non-obstetrical patients is 200 mg total. One half of the total dose is usually administered to each side. Inject slowly, five minutes between sides (see also discussion of paracervical block in PRECAUTIONS).

For intravenous regional anesthesia, the dose administered should not exceed 4 mg/kg in adults.


Children




It is difficult to recommend a maximum dose of any drug for children, since this varies as a function of age and weight. For children over 3 years of age who have a normal lean body mass and normal body development, the maximum dose is determined by the child’s age and weight. For example, in a child of 5 years weighing 50 lbs the dose of lidocaine hydrochloride should not exceed 75 to 100 mg (1.5 to 2 mg/lb). The use of even more dilute solutions (i.e., 0.25 to 0.5%) and total dosages not to exceed 3 mg/kg (1.4 mg/lb) are recommended for induction of intravenous regional anesthesia in children.

In order to guard against systemic toxicity, the lowest effective concentration and lowest effective dose should be used at all times. In some cases it will be necessary to dilute available concentrations with 0.9% sodium chloride injection in order to obtain the required final concentration.

NOTE: Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever the solution and container permit. Do not use if solution is discolored or contains a precipitate.

Table 1: Recommended Dosages
ProcedureLidocaine Hydrochloride Injection
(without epinephrine)
Conc (%)Vol (mL)Total Dose (mg)
*Dose determined by number of dermatomes to be anesthetized (2 to 3 mL/dermatome).
Infiltration



Percutaneous
0.5 or 1
1 to 60
5 to 300
Intravenous regional
0.5
10 to 60
50 to 300
Peripheral Nerve Blocks, e.g.,



Brachial
1.5
15 to 20
225 to 300
Dental
2
1 to 5
20 to 100
Intercostal
1
3
30
Paravertebral
1
3 to 5
30 to 50
Pudendal (each side)
1
10
100
Paracervical



Obstetrical analgesia (each side)
1
10
100
Sympathetic Nerve Blocks, e.g.,



Cervical (stellate ganglion)
1
5
50
Lumbar
1
5 to 10
50 to 100
Central Neural Blocks



Epidural*



Thoracic
1
20 to 30
200 to 300
Lumbar



Analgesia
1
25 to 30
250 to 300
Anesthesia
1.5
15 to 20
225 to 300

2
10 to 15
200 to 300
Caudal



Obstetrical analgesia
1
20 to 30
200 to 300
Surgical anesthesia
1.5
15 to 20
225 to 300

THE ABOVE SUGGESTED CONCENTRATIONS AND VOLUMES SERVE ONLY AS A GUIDE. OTHER VOLUMES AND CONCENTRATIONS MAY BE USED PROVIDED THE TOTAL MAXIMUM RECOMMENDED DOSE IS NOT EXCEEDED.


Sterilization, Storage And Technical Procedures




Disinfecting agents containing heavy metals, which cause release of respective ions (mercury, zinc, copper, etc.) should not be used for skin or mucous membrane disinfection as they have been related to incidents of swelling and edema.


Otc - Active Ingredient



Active Ingredient                                                  Purpose

Povidone Iodine 10% w/v (9.85% w/w/)               Antiseptic


Purpose:



Purpose:

  • First aid antiseptic to help prevent skin infection in minor cuts, scrapes and burns.
  • For preparation of the skin prior to surgery.
  • Helps reduce bacteria that can potentially cause skin infections.

Warnings:



Section Text

  • FOR EXTERNAL USE ONLY

Do Not Use:




  • As a first aid antiseptic for more than 1 week.
  • In the eyes.
  • Over large areas of the body.

Ask A Doctor Before Use If You Have:




  • Deep puncture wounds
  • Animal bites
  • Serious burns

Stop Use:




  • If irritation and redness develop
  • If condition persists for more than 72 hours, consult a physician.

Keep Out Of Reach Of Children



Keep out of reach of children.If swallowed, get medical help or contact a Poison Control Center.



Directions Povidone Iodine:



Tear at notch, remove applicator, use only once.

As a first aid antiseptic

  • clean affected area
  • apply 1 to 3 times daily
  • may be covered with a sterile bandage, if bandaged let dry.

  • For preoperative patient skin preparation

    • clean area
    • apply to operative site prior to surgery using the applicator


Other Information:



Store at room temperature.

Avoid excessive heat


Indications & Usage



For use as an

  • first aid antiseptic
  • pre-operative skin preperation

Inactive Ingredients



Inactive ingredients: Citric acid, glycerin, polysorbate 80, sodium citrate USP, sodium phosphate dibasic, water


Active Ingredient




Purpose



Antiseptic


Uses



For first aid to decrease germs in

  • minor cuts
  • scrapes
  • burns
  • For preparation of the skin prior to injection


Do Not Use



with electrocautery procedures


When Using This Product Do Not



  • get into eyes
  • apply over large areas of the body
  • in case of deep or puncture wounds, animal bites or serious burns consult a doctor

Stop Use And Ask A Doctor If



  • condition persists or gets worse or lasts for more than 72 hours
  • do not use longer than 1 week unless directed by a doctor

Keep Out Of Reach Of Children.



If swallowed, get medical help or contact a Poison Control Center right away.


Directions



  • apply to skin as needed
  • discard after single use

Other Information



Protect from freezing and avoid excessive heat


Inactive Ingredient



Water


Package Label.Principal Display Panel



PACKAGE LABEL.PRINCIPAL DISPLAY PANEL

NDC: 76420-765-01

RX Only

Betalido™

Kit Contains

1 Betamethasone Sodium Phosphate and Betamethasone Acetate 6mg/mL (5mL)

2 Lidocaine HCl Injection, USP 1% Single Dose Vial (5mL)

1 Povidone-Iodine Swabsticks (3 Swabs)

3 Isopropyl Alcohol 70% Prep Pads

1 Pair Nitrile Powder Free Sterile Gloves (M)

1 Drape

1 Adhesive Bandage

5 Non Sterile 4x4 Gauze

Needles and Syringes Not Included

1 Dose

Single Use Only

Distributed by:

Enovachem Pharmaceuticals

Torrance, CA 90501


* Please review the disclaimer below.